The Western USA has been a major uranium producing region since the 1940s. Few new deposits have been identified since the 1980s.

All proposed new mines in the USA seek to exploit deposits discovered decades ago.
The Northern Plains states of Wyoming and Nebraska host most of the currently licensed uranium production in the US currently that use in situ recovery. The Proposed Dewey-Burdock in situ mine in South Dakota and most ISR mines in Wyoming and Nebraska are on land designated as “the Great Sioux Reservation in the 1868 Fort Laramie Treaty.

http://www.nrc.gov/info-finder/materials/uranium/licensed-facilities/dewey-burdock.html

http://www.russellmeansfreedom.com/tag/cancer/
Cameco-Owned Crow Butte In Situ Uranium Mine, Nebraska
New Mexico Uranium Resources are found near Mt. Taylor – a Sacred Site for Local Native Tribes - in the Grants Mineral Belt

Mt. Taylor Traditional Cultural Property (TCP) designated by US Government after petition by Five Native Tribes – Acoma, Laguna, Zuni, Hopi and Navajo. Two uranium mines Roca Honda and La Jara Mesa are currently proposed in the Mt. Taylor TCP and the exploration area for the Mt. Taylor mine is within the TCP.

Roca Honda mine currently in comment period for 2500-4000 gallon per minute mine water discharge from dewatering of ore zone under US Forest Service environmental assessment.
The Grand Canyon region of Northern Arizona is a focus of uranium development and uranium challenges. The US Government established a 20-year moratorium on new uranium exploration claims near Grand Canyon and upheld against challenges. However, existing permitted mines including Energy Fuel’s Pinenut mine north of Grand Canyon and Canyon mine near a significant Havasupai Cultural Site – Red Butte are not affected. The proposed restart of Canyon Mine is a focus of current campaigns.
The legacy of environmental health and natural resources damage from the first 50 years of uranium mining in the US is still being addressed.

While Utah and Colorado had the most uranium mines during the “US weapons-purchase” uranium period from the 1940-1971. Most of the uranium mined during that period came from larger mines in New Mexico.
The US uranium legacy includes mines, mills, tailings piles and other government owned or managed sites across the country that are subject to remediation programs and permanent government oversight and monitoring.

The Uranium Legacy in the Navajo Nation

Most AUM sites in Navajo Country NOT reclaimed

AUM Sites Navajo Nation, Northwest NM

Navajo Nation Environmental Protection Agency/WRCD/Superfund
Abandoned Uranium Mines Locations and Reclamation Status

Modified by SRIC, 2008-2009
77% of 521 AUM sites in Navajo Country have gamma radiation levels more than 2x background
Several Occupied Residences Close to Claim 28 Mine

- 5 residences (20-25 people) within 1 mile of mine dump
- 3rd largest mine in terms of uranium ore production in Tachee Mining District
 - 4.2 million tons ore produced, 1957-1968
- NNAML placed dirt cover on waste dump in 1992 to stabilize materials
- SRIC radiation survey 7/9/13:
 - Gamma radiation on waste dump slope 2 to 5 times greater than local background (i.e., 40-100 microRoentgens per hour)
 - Several “hot spots” (gamma rates at least 2x background) found in surrounding community
 - Area has higher background radiation than other places on Navajo Nation
Community Environmental Health Work

Overview of the Navajo Birth Cohort Study

Prepared by
Chris Shuey, MPH, co-investigator
Jennifer Ong, PhD candidate
Johnny E. Lewis, PhD, D.A.B.T., Principal Investigator
October 2013; revised June 2014

http://www.sric.org/nbcs/docs/NBCS_overview_063014.pdf

A child watches uranium mine wastes being hauled away from next to his home in Coyote Canyon-Chaptiev, Navajo Nation

10.09.2009

Red Water Pond Road Community

Figure 2: Uranium affected locations in Tachee/Blue Gap Chapter of the Navajo Nation, Arizona

http://www.sric.org/nbcs/docs/NBCS_overview_063014.pdf

UNM METALS Monograph 1*Uranium in Soil, Mine Waste and Spring Water near Abandoned Uranium Mines, Tachee/Blue Gap and Black Mesa Chapters, Navajo Nation, Arizona

http://www.sric.org/russia_dialogue/docs/2014_Russia_visitRWPR_History_Composite_042412_1.pdf

http://www.sric.org/uranium/docs/METALS_Monograph1_Final_040814a.pdf

http://www.sric.org/russia_dialogue/docs/2014_Russia_visitRWPR_History_Composite_042412_1.pdf
US Uranium Reserves - The amount of uranium mineable at a profit – reported by the Department of Energy (DOE) Energy Information Administration (EIA) have dropped by 73% since 2008.

Government estimates of US uranium reserves have fallen dramatically as the cost of uranium mining has increased, the price of uranium has decreased and projected demand has slowed significantly.

US uranium reserves, reported by DOE for the <$100/lb “forward cost” have fallen by 73% from: 1,227 million lbs in 2008 to 337 million lbs in 2013.

In Wyoming, <$50/lb “forward cost” uranium reserves has fallen by 56% from 220 million lbs in 2008 to 98.5 million lbs in 2013 and <$100/lb uranium reserves has fallen 32% from 446 million lbs to 308 million lbs.

In New Mexico (no longer reported separately by DOE), <$50/lb “forward cost” uranium reserves have fallen more from 179 million lbs in 2008 to 165 million lbs in 2013 from, for the southwestern states of New Mexico, Arizona and Utah. New Mexico’s <$100/lb uranium reserves fell >52% from 390 million lbs in 2008 to 189.1 million lbs including New Mexico, Arizona, and Utah in 2013.

While DOE EIA “forward cost” reserves are not comparable to “reserves” as defined by Canadian NI 43-101 standards, “forward cost” reserves calculated by DOE reasonably for separate years of data developed with the same method.
US 2013 uranium production of 4.7 million lbs represents only 18.9% of licensed production capacity

2013 US Production capacity – 16.4 million lbs. - In situ licensed production 8.0 million lbs. – licensed conventional production 24.8 million lbs. - US Operating Capacity 4.7/24.8 – 18.9% Operating Capacity

9.4 million lbs of additional in situ production in “permitting pipeline”

4.7 million lbs = 2,350 tons
24.8 million lbs = 12,400 tons
9.4 million lbs = 4,700 tons

US demand for uranium in 2013 was about 18,000 tons. The US Only produced 2,350 tons from Licensing capacity of 12,400 tons
US has one licensed conventional uranium mill with capable of producing 8,000,000 lbs (4,000 tons) per year at White Mesa in Utah. It owner Energy Fuels, Inc. reports total uranium production of 1,007,000 lbs. (http://www.energyfuels.com/_resources/AIF-2013.pdf p. 21-22)

The USA has enough uranium resources to power its reactors but domestic uranium is much more expensive to mine and process that other uranium available on the world market.

Thank you for your time and attention