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PREFACE

This report builds upon the extensive and careful analyses made by the DOE of
the probability of failure of the waste hoist, and more particularly on the
probability of failure of a major component, the hydraulic brake system. The
extensive fault tree analysis prepared by the DOE was the starting point of
the present report. A key element of this work is the use of probability
distributions rather than so-called point estimates to describe the
probability of failure of an element. One of the authors (MAG) developed the
expressions for the probability of failure of the brake system. The second
author (TJS) executed the calculations of the final expressions for failure

probabilities.

The authors hope that this work will be of use to the DOE in its evaluation of
the safety of the waste hoist, a key element at the WIPP.
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FOREWORD

The purpose of the Environmental Evaluation Group (EEG) is to conduct an
independent technical evaluation of the Waste Isolation Pilot Plant (WIPP)
Project to ensure protection of the public health and safety and the
environment. The WIPP Project, located in southeastern New Mexico, is being
constructed as a repository for permanent disposal of transuranic (TRU)
radioactive wastes generated by the national defense programs. The EEG was
established in 1978 with funds provided by the U.S. Department of Energy (DOE)
to the State of New Mexico. Public Law 100-456, the National Defense
Authorization Act, Fiscal Year 1989, Section 1433, assigned EEG to the New
Mexico Institute of Mining and Technology and continued the original contract

DE-AC04-79AL10752 through DOE contract DE-AC04-89AL58309.

The New Mexico Radioactive and Hazardous Materials Act, Laws 1991, Ch. 2,
Section 2, defined EEG as the independent state review facility for the impact
on health and safety of the WIPP. The 1992 WIPP Land Withdrawal Act, Public
Law 102-579, requires the DOE to consult and cooperate with the EEG.

EEG performs independent technical analyses of the suitability of the proposed
site; the design of the repository, its planned operation, and its long-term
integrity; suitability and safety of the transportation systems; suitability
of the Waste Acceptance Criteria and the generator sites’ compliance with
them; and related subjects. These analyses include assessments of reports
issued by the DOE and its contractors, other federal agencies and
organizations, as they relate to the potential health, safety and
environmental impacts from WIPP. Another important function of EEG is
independent environmental monitoring of background radioactivity in air,

water, and soil, both on-site and in surrounding communities.

Dot Nty

Robert H. Neill
Director
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SUMMARY

An assessment is made of the various DOE reports describing the safety of the
waste hoist at WIPP. The DOE reports include studies by Banz et al. (1985),
an unpublished draft by Chan et al. (1987), and more recently the Final Safety
Analysis Report (FSAR), May 1990, Volume III, Chapter 7, Appendix 7B. The
most definitive DOE study appears in the IRA DOE/WIPP-89-010, 1990, WIPP
Integrated Risk Assessment (IRA), Volume II, Section 4.3. The earlier studies
identified the possible failure of the hydraulic brake system as the most
important contributor in the accident scenarios. As a consequence the WIPP
IRA includes an analysis of the likelihood of an accident to the braking

system, based on a probabilistic risk assessment.

This report accepts as a given the design of the hydraulic brake system, and
the elaborate and complete fault tree analysis appearing in the WIPP IRA of
the possible failure modes of the brake system. This report does assess two
aspects of the DOE report which present difficulties. The first relates to a
major DOE decision (FSAR May 1990, p. 7B-2) to describe all results in terms
of so-called "point estimates," rather than including probability
distributions, which provide estimates of uncertainties. The DOE bases its
decision, in part, on a recommendation of the NRC, appearing in the Federal
Register, to use mean calculated values of individual risk to compare with
quantitative safety goals. However, a close reading of the reference in the
Federal Register reveals that in addition to recommending the use of mean
calculated values, the NRC also recommends the use, where practicable, of
estimates of uncertainties. This makes it possible to estimate the confidence

level to be ascribed to quantitative results.

A second aspect of the DOE reports is the reliance on data sources that, in

some instances, are not the most recently available.
This report describes a methodology for calculating probability distributions

to evaluate the risk of failure of a system in terms of the probability

functions which are applicable to individual components in the system. This
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approach provides not only mean values for the probability of failure, but

also provides estimates of uncertainties.

Key factors in the calculations include rate of failure data for certain types
of valves, especially motor driven valves and manual ball valves. The data
for the motor driven valves are derived from Licensee Event Reports.
Imperfections in these data make it advisable to calculate lower and upper
bounds. For the manual ball valves the most recent data source lists two
separate series of rates of failure. This suggests that there may not be a
single generic type of manual ball valve. Without additional information, it

is prudent to use the series with the greater rate of failure.

Calculation of lower and upper bounds yielded values of probability of the
order of 107® for the lower bound, and 107* for the upper bound for rates of

failure of the hydraulic brake system.

The conclusion reached in the January 1990 report "Probabilities of a
Catastrophic Waste Hoist Accident at the Waste Isolation Pilot Plant," EEG-44,

by the author remains unchanged.

DOE has erred in the Final Safety Analysis Report in concluding that a
catastrophic accident involving the WIPP radioactive waste hoist system over
the 25 years of expected operation is incredible (annual probability less than
10®). DOE should therefore perform consequence analyses of a catastrophic
accident involving the waste hoist system. These calculations and mitigation
measures to reduce the probability of an accident and to minimize the impact

of such an accident should be included in the WIPP Safety Analysis Report.
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RECOMMENDATIONS

(1) Since the probability of a catastrophic failure is greater than 107%, DOE
should do a quantitative analysis of such an accident and publish the results

in the Final Safety Analysis Report as required by DOE Order AL 5481.1B.

(2) An annual review is advised of all incidents that have occurred which
bear on the matters of safety for personnel and quality assurance for
equipment and systems. This review should certainly include all Unusual
Occurrence Reports (UOR) and Class C Investigations, if any. Based on such a
review, consideration should be given to changes that would strengthen quality

assurance and minimize human errors in operation of the waste hoist.

(3) The data for failure rates of motor driven valves are based on
information developed from 1976 to 1980, some 13 to 17 years ago, the Licensee
Event Reports. The authors of the pertinent report, NUREG/CR-2770, point to a
number of serious imperfections in the data. Yet it has been shown in the
present report that the calculated probability of failure of the waste hoist
brake system depends sensitively on the assumed failure rates of motor driven
valves. Therefore, it is recommended that the DOE undertake to obtain more

current information about the behavior of this crucial type of wvalve.

(4) A second important type of valve is the manual ball valve. DOE used a
reference for failure rates from IEEE Std 500-1984 titled "Nonelectric Parts
Reliability Data (NPRD-2)," published in 1981, 12 years ago. The present
report cited a later work, NPRD-3, published in 1985. The latter report
included the data for manual ball valves which appear in NPRD-2 (used by DOE
in their analysis). However, NPRD-3 also included separate data for manual
ball valves with failure rates that are 15x those reported in NPRD-2. The
question is raised whether there exists more than one type of generic manual

ball valve.

Again, it is recommended that the DOE undertake to obtain the most current
information about manual ball valves, and to determine specific information

about the manual ball valves installed in the brake system of the waste hoist.
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(5) 1If the DOE undertakes additional calculations of the probability of

failure of the brake system of the waste hoist, it is recommended that the

following items be considered for inclusion:

(a) Follow the recommendations of the Nuclear Regulatory Commission to
include mean estimates and to "take into account the potential
uncertainties that exist so that an estimate can be made on the

confidence level to be ascribed to the quantitative results.”

(b) Assume human error can occur. Use the methodology described by

Swain and Guttman (1983) which was used in the Chan et al. (1987)

report.
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I. INTRODUCTION

The hoist for radioactive transuranic waste at the Waste Isolation Pilot
Project (WIPP) is a major system, performing important tasks on a daily basis.
The Department of Energy (DOE) recognized the importance of evaluating the
safety of the waste hoist, and published a number of studies (Banz et al.
1985, Chan et al. 1987, unpublished) which made probabilistic risk assessments
of the chance occurrence of a catastrophic accident. Operating experience
with the waste hoist led to a number of design changes and improvements. The
most recent reports (Westinghouse Electric Corp. 1990, U.S.DOE 1990)
summarized an assessment of the risk of an accident at the waste hoist, as it
is now constructed. The earlier studies (Banz et al. 1985, Chan et al. 1987)
demonstrated that the most important contributor in the accident scenarios was
the possible failure of the hydraulic brake system. As a consequence the FSAR
and WIPP IRA include an analysis of the likelihood of an accident to the

braking system, based on a probabilistic risk assessment.

A major DOE decision (Westinghouse Electric Corp. 1990, p.7B-2) was to
describe all results in terms of so-called "point estimates", rather than use
probability distributions, which provide estimates of uncertainties. However,
within the scientific community, many prefer to use probability distributions,
rather than only point estimates, in evaluating risks of failure in a system
of interest (Finkel 1990, Apostolakis 1990). This issue will be discussed in

some detail later in this report.

There is a second problem with the data used in the DOE report. A major
component of the DOE calculations is the information regarding failure rates
of certain critical valves in the hydraulic waste hoist system. The DOE
report relied on failure rates listed in the IEEE Std 500, 1984. These data
came from references describing information gathered from 1976 to 1980. Thus,
the failure rate data are largely 10 to 15 years old. In a number of
instances these references are superceded by later reports which supply
additional information. In one of these references (Steverson and Atwood

1983), there is an important discussion of imperfections in the data, which



must be taken into account if one is to have a realistic description of the

upper and lower bounds of probabilistic risk assessments.

This report starts with a brief history of the studies completed on the
reliability of the hydraulic waste hoist system, followed by discussions of
the use of confidence intervals vs. point estimates alone, and the need to
consider the possibility of human error as a factor which impacts on the

reliability of a system.

This report describes a methodology for calculating probability distributions
to evaluate the risk of failure of a system in terms of the probability
functions which are applicable to individual components in the system. This
approach provides not only mean values for the probability of failure, but

also provides estimates of uncertainties.

The report reviews the previous studies made by the DOE, and applies the

methodology referred to above to those studies.

ITI. BRIEF HISTORY OF THE TRANSURANIC WASTE HOIST BRAKE SYSTEM

There have been a number of DOE studies of the waste hoist system. Chan et
al. (1987 unpublished draft) placed special emphasis on the brake design, a
crucial element from the point of view of safety. Table 1 lists them in

chronological order.

(a) The Generic Case Study by Banz et al. (1985) calculated a probability of
brake system failure of 3.7x1077. The EEG reviewed this report and stated
that a number of important factors were overlooked, including appropriate
quality assurance (QA), quality of maintenance, human factors which may
contribute to an accident, and the possibility of operator errors. The DOE
rejected these suggestions, especially the idea that human factors may
contribute to an accident. Two years later there was a serious incident on
July 25, 1987, involving maintenance procedures. Valve No. 45 leaked, and the
contractor was called to address the problems, since the hoist was still under

warranty.



TABLE 1. STUDIES OF PROBABILITY OF BRAKE SYSTEM FAILURE

Probability of Probability of
Case Brake System Failure|Catastrophic Accident Source
(a) Generic 3.7x1077 1.7x107® Banz et al.,
Case 1985
(b) Base 2.7x1072 1.0x1073 Chan et al.,
Case 1987
(unpublished)
(¢c) Sensitivity 1.5x1078 5.2x1078 Chan et al.,
Case 1 1987
(unpublished)
(d) Design FSAR, App7B
Option 1990
B-2 2.2x1077 IRA DOE/WIPP
-89-010(1990)

The contractor offered to replace the valve with a different type. Some
changes allowed the replacement valve to "fit"; after the power was turned on,
the hoist freewheeled up 30 ft. (the counterweight is heavier than the hoist
conveyance), and then stopped by itself. It was noted that the replacement
valve could also be installed in reversed orientation. This was done, the
power was turned on, the hoist freewheeled 300 ft., and again it stopped by
itself. Fearing the worst, all personnel were ordered to leave the area. The
system of braking works as follows: when pressure is "on", the brakes are
released; when pressure is "off", the brakes are set. This arrangement was
described as being conservative, since it was thought that the probability of
having the braking pressure "off" would be greater than the probability of
having the braking pressure "on", in case of an accident. The freewheeling

incidents appear to undermine this assumption.

The DOE issued an Unusual Occurrence Report (UOR) dated 8/11/87, and a report
on a Class C Investigation (Westinghouse Electric Corp., 1987), dated

10/15/87. 1t appears that when the valve was changed, it was placed in a



dead-center position, blocking the possibility of any pressure release. Thus,
when the hoist was powered and the brakes released, freewheeling occurred.
Sufficient leakage in the hydraulic system could have caused the pressure to

drop sufficiently, permitting the brakes to engage.

The UOR listed the mistakes as human errors, which included supervisors,

workers, contractor personnel, and absence of proper QA.

(b) The second study by Chan et al. (1987) was an excellent engineering
analysis of the defects in the original design, and recommended design
changes. They suggested a number of changes in the hydraulic system design,
including the addition of two dump valves. If deenergized, these would open
and dump fluid directly into reservoirs, relieving pressure in the system, and
thus set the brakes. The report analyzed the Generic Case and Base Case,
which included the possibility of human errors associated with maintenance
procedures. The calculated probability of a brake system failure, called the
Base Case, is 2.7x107%, and the annual probability of a catastrophic accident
is 1.0x107®. Thus, the original claim in the Generic Case of 1.7x107® (also
quoted in the FSAR) was too low by a factor of 6x10%. The very low value of
1.7x1078 in the Generic Case was based on the assumption that two components
of the braking system were independent, and that the probability of failure of
the braking system, would be the product of the probabilities of failure for
each of the two components. 1In fact the design was such that the two
components were not independent in the face of the incident that occurred on

July 25, 1987.

(c) Chan et al. (1987) then analyzed the proposed and improved design,
called Sensitivity Case 1, and calculated a failure probability wvalue of the
brake system as 1.5x10°®, It should be noted that this calculation included
the possibility of human errors contributing to the failure of the braking

system.

In a report published by the Environmental Evaluation Group (Greenfield 1990),
the major criticism of Chan et al. (1987) was their use of point estimates
only, with no recognition of data uncertainties. In fact the references used

by Chan et al. (1987) included confidence intervals as well as point

4



estimates. However, the confidence intervals were not used in the Chan et al.

(1987) report for Sensitivity Case 1.

(d) 1IRA DOE/WIPP-89-010 (U.S. DOE 1990) describes in detail Design Option
B-2, the design adopted by the DOE and built into the waste hoist at this
time. This design incorporated the recommendations of the Chan et al. (1987)
draft report to add dump valves, and also added additional features to enhance
the safety of the brake system and therefore of the waste hoist itself. These
new features included the replacement of valves 45 and 51 with types having no

"dead center" positions, a crucial hazard in the original system.

The Design Option B-2 calculations resulted in a value for the probability of
brake system failure of 2.2x1077. The details of these calculations are in
Table 4-19, page 4-290, Table 4-18, page 4-289, Table 5-3, page 5-8 and Table
5-2, page 5-8, in the IRA (U.S. DOE 1990) report.

The improved hydraulic engineering design, and the careful fault-tree analysis
characterizing Design Option B-2 are impressive achievements. However, there
are two serious oversights in the analysis of this Option. Once again the
report relies only on point estimates, now the mean instead of the median
values used previously, without the use of confidence intervals to denote and
characterize uncertainties in the data. The second oversight is not
considering human error as contributing to the possibility of an accident.
This latter point is a regression from the inclusion of human error
probabilities (HEP) in the predecessor draft report by Chan et al. (1987).

Each of these two omissions will be discussed in some detail.

IITI. USE OF CONFIDENCE INTERVALS VS. POINT ESTIMATES ALONE

Some key reliability data used in the IRA calculations for Design Option B-2
are from the standard 500-1984 published by the Institute of Electrical and
Electronic Engineers (IEEE 1983). This data base usually includes reliability
data with median, means and 90% confidence intervals (95% level of

confidence).



In the WIPP FSAR (Westinghouse Electric Corp. p. 7B-2), the DOE discusses
which calculated quantity should be compared with the DOE standard (the
standard is defined by Order AL 5481.1B: "events having a frequency of
occurrence of less than one chance in a million per year as being
incredible"). They considered as candidates: the median, the mean, and the
95th percentile. With this formulation the DOE restricted their choices to
some point estimate, rather than including a confidence interval in addition
to a point estimate. The DOE chose to use a mean value, basing their decision
in part on a precedent provided by the Nuclear Regulatory Commission. Within
its safety goal policy statement, published in the Federal Register (Nuclear
Regulatory Commission 1986, p. 30028-30033), the NRC states as its performance
guideline that the mean calculated values of individual risk should be
compared with the quantitative safety goals. Additionally, for distributions
skewed to the right, the mean exceeds the median, making the mean the more
conservative choice. However, the DOE made a selective rather than a complete

reference on this issue.

A perusal of the referenced Federal Register (Nuclear Regulatory Commission
1986) reveals that indeed a recommendation was made to use mean values.
However, the recommendations continue with statements of the need to consider
and include, where practicable, estimates of uncertainties! A brief quotation

makes the point (see page 30031) (underlining added for emphasis):

Treatment of Uncertainties

To the extent practicable, the Commission intends to insure that
the quantitative techniques used for regulatory decision-making
take into account the potential uncertainties that exist so that
an estimate can be made on the confidence level to be ascribed to
the quantitative results.

The Commission has adopted the use of mean estimates for purposes
of implementing the quantitative objectives of this safety goal
policy (i.e. the mortality risk objectives). Use of the mean
estimates comports with the customary practices for cost-benefit
analyses and it is the correct usage for purposes of the mortality
risk comparisons. Use of the mean estimates does not however
resolve the need to quantify (to the extent reasonable) and
understand those important uncertainties involved in the reactor
accident risk predictions. A number of uncertainties (e.g.
thermal-hydraulic assumptions and the phenomenology of core-melt
progression, fission product release and transport, and
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containment loads and performance arise because of a direct lack
of severe accident experience or knowledge of accident
phenomenology along with data related to probability
distributions.

In such a situation, it is necessary that proper attention be
given not only to the range of uncertainty surrounding
probabilistic estimates, but also to the phenomenology that most
influences the uncertainties. For this reason, sensitivity
studies should be performed to determine those uncertainties most
important to the probabilistic estimates. The results of
sensitivity studies should be displayed showing, for example, the
range of variation together with the underlying science or
engineering assumptions that dominate this variation. Depending
on the decision needs, the probabilistic results should also be
reasonably balanced and supported through use of deterministic
arguments. In this way, judgments can be made by the decision
maker about the degree of confidence to be given to these
estimates and assumptions. This is a key part of the process of
determining the degree of regulatory conservatism that may be
warranted for particular decisions. This defense-in-depth
approach is expected to continue to ensure the protection of
public health and safety.

The quotation makes the case clearly and cogently to use a range of
uncertainty surrounding all probabilistic estimates. Fortunately, the waste
hoist analysis is enormously simpler than that required for analyzing nuclear
reactor accidents. For the most part it requires making reasonable
assumptions about the performances of a relatively small number of key valves
that play a major role in assessing the safety of the brake system. The
excellent analysis already made in the IRA identified these valves, and allows

one to focus on them. That will be done later in this report.

A concomitant issue, once the need for obtaining confidence intervals is
accepted, is the responsibility of the DOE to decide the level of confidence
to be used, whether at the 50th percentile, the 95th percentile, the 99th
percentile, or even the 99.9th percentile. A forthright statement made by
Commissioner Bernthal (Nuclear Regulatory Commission 1986, p. 30033) in the
context of the estimated frequency of severe core-damage was: "Conservative
consideration of associated uncertainties should offer at least 90 percent
confidence (typical good engineering judgment, I would hope) that the offsite
release goal is met." This suggests that the DOE should think about how best

to meet its safety goals. An expression of a confidence level, plus a



justification thereof, would be an important part of the safety goal

statement.

IV. HUMAN ERROR PROBABILITY (HEP)

The EEG-44 report describes in some detail the DOE’s rejection of the
possibility of human error contributing to a waste hoist failure, in the
context of the Banz et al. (1985) report. After the freewheeling incidents at
the waste hoist on July 25, 1987, the DOE acknowledged the seriousness of
human error in two reports: the Unusual Occurrence report, dated 8/11/87, and
the Class C Investigation report, dated 10/15/87, analyze the factors, human
and others, which contributed to the freewheeling incidents. In fact the next
relevant DOE report on the safety of the waste hoist, Chan et al. (1987) does
include the possibility of human error in the analyses made. Unfortunately,
in the most recent report analyzing the safety of the waste hoist brake
system, Design Option B-2, Integrated Risk Assessment (IRA) (U.S. DOE 1990)
June 1990, the DOE chose to ignore the possibility of human error, despite

occurrences of human error in similar situations.

The section "4.3" of the IRA report, devoted to the "Waste Hoist Brake System
Analysis", does discuss the possibility of inclusion of operator action and
human error. However, the possibility of including these factors in the
accident scenarios is excluded, except under certain stringent conditions.
Some of these are discussed now. The following quotes are taken from section

"4.3", followed by this writer’s comments.

(a) "Proper maintenance is a critical factor in safe system operation. It
must be recognized that poor maintenance and maintenance practices have the
potential for being a critical contributor to problems. Explicit
identification of specific failures, which may occur during equipment

maintenance, is beyond the scope of this study" (p.4-13).

EEG Comment: This quote "makes the case" for including poor maintenance
practices in accident scenarios. Yet paradoxically the idea is rejected,

possibly because of the difficulty in identifying specific failures. A way to
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proceed would be to make the reasonable assumption that some instances of poor
maintenance practices will occur, and to include an accident scenario with a
generic assumption of a poor maintenance practice. The details of how to do
this are given in the excellent DOE reference on this subject, used in the
Chan et al. (1987) report, "Handbook of Human Reliability Analysis with
Emphasis on Nuclear Power Plant Applications", A.D. Swain, H.E. Guttman,;
NUREG/CR-1278-F, 1983.

(b) "The failure of maintenance personnel to return valves or pump trains to
their normal position after valve or pump maintenance will be considered as
credible events if: (1) proper positioning can not be detected using required
post-maintenance tests, (2) the incorrect position is not immediately detected
at the control board by alarm or annunciation, or (3) the component does not

receive emergency signal" (p. 4-13).

EEG Comment: One may assume that the required post-maintenance test was not
performed, or not performed correctly. Swain and Guttman discuss such
possibilities and assign HEP values, including confidence intervals. The DOE
reported problems with "annunciation" systems that did not work for reasons
associated with human error. The entire point is that the possibilities for
human error do exist, reasonable HEP values can be assigned via Swain and

Guttman, and inclusion in calculations of cutsets is possible.

(c) "The probability of HE in closing certain vital, well-tagged manual
valves that are normally open during operation is assumed to be dominated by
their random failure rates. These valves include: 101.1/2, 102.1/2, 103.1/2,
26.1/2, 56.3/6" (p. 4-47).

EEG Comment: The quoted material continues to state that valves 56.3/6 and
26.1/2 are locked in the open position, and only one key is issued at a time
to the hoistman. One can imagine human error scenarios here. The hoistman
accidentally takes the key home or becomes ill. The extra key may fall into
the wrong hand, followed by mischief or sabotage. While the suggested
scenario may be far-fetched or unlikely, it is simply not possible to
foreclose the possibility of human error due to accident, carelessness,

oversight, tiredness, etc. This point will be re-examined when the evidence
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is considered later in this report about the frequency of valve malfunction

instances due to human factors.

(d) "It is assumed that there is no center position for valves 25.1/2/3/4,
which block both return flow paths" (p. 4-48).

EEG Comment: Why is an assumption made? It should be known whether these

valves do or do not have center blocking positions.

(e) "Poor maintenance practices or miscalibration can have a direct
contribution to poor brake system operation. It is assumed that maintenance
practices, maintenance procedures, and post-maintenance functional testing is

properly performed" (p. 4-50).

EEG Comment: The statement speaks for itself. One assumes and hopes that
good practices will occur. However, one must allow for the possibilities of
oversight, carelessness, and poor supervision that have occasionally occurred
in the past, and may occur in the future. Once again, Swain and Guttman show

how to make provision for such possibilities in HEP calculations.

(f) "Human Errors (HEs) associated with failures during maintenance were
modeled in previous waste hoist analyses. HEs associated with maintaining
valves 51 and 45 and restoration failures were previously modeled. With the
system upgrades that have been or will be implemented, the potential for a

hoist accident is greatly reduced" (p.4-52).

EEG Comment: Improvements are significant and important. However "greatly
reduced" does not equal eliminated! Again the DOE took good care to prevent
or mitigate the human errors of the past, particularly those human errors that
actually occurred. Does this equate to the elimination of those human errors

of the future, that have not occurred in the past?
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V. CHAN ET AL. DRAFT REPORT, 1987 (UNPUBLISHED)

The unpublished DOE draft report written by Chan et al. (1987) computes the
annual probability of a catastrophic accident at the waste hoist (Sensitivity
Case 1; see Table 1). The report bases its calculation on the annual
probability that three independent events will occur leading to catastrophic
failure. Since the events are independent, the total probability of failure
is the product of the probabilities of the independent events. These events

and their probabilities are described below:

P, = annual probability of electric power failure while hoist is in
use.

P, = annual probability of failure of either valve 45 or valve 51, due
to "local fault" or to operator error during maintenance
procedures.

P, = annual probability of failure of the dump valves.

P = P;xP,xP; = annual probability of catastrophic failure of the waste
hoist.

Chan et al. used the value P, = 0.034, taken from an earlier published DOE
report, Banz et al. (1985). 1In an analysis of the report undertaken by the
Environmental Evaluation Group, a somewhat different value, P, = 0.0776, is
used for reasons given in the EEG report (#44, 1990). From data in Chan et
al. (1987) EEG-44 (Greenfield 1990) obtains the following values for P, and
Py

P, = 2.7x1072
Py = 5.27x1073

Thus, P = (0.0776)(2.7x1072)(5.27x1073) = 1.10x1077

This value is somewhat higher than the approximately 5x107® value for P given

by Chan et al. (1987) because of the change in P,.

The basic criticism of the computation of P in Chan et al. (1987) by EEG-44 is

that it is based on point estimates alone, median values in this case, without
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inclusion of confidence intervals, reflecting uncertainty in the data. It may

be helpful to elaborate since this is a key issue.

P, failure rates for valves 45 and 51 were based on industry surveys for
"local fault" failure rates (IEEE 1983), and on surveys made by Swain and
Guttman (1983) for failures due to human errors. In effect by only using the
median values in calculating P,, there exists the possibility that there is a
50% or greater chance that the true value of P, is greater than the wvalue
chosen. The same situation applies to P;, the annual failure rate for the
dump valves. Again by only using a median value, there is a 50% chance that
the true value of P; is greater than the value chosen. In fact the
calculation of the cumulative distribution function (given later in this
report) will show that the value of 1.10x1077 (based on median values)
corresponds approximately to the 25th percentile; thus, in this case there is
a 75% chance that the true value of P is greater than the value based on a

simple use of median values for the components P,, P;.

EEG-44 did not attempt a calculation of the cumulative distribution function
for P, a point also made by Dr. G. Kaiser (Kaiser 1990). Dr. Kaiser and a

colleague, Dr. Gary De Moss, used a Monte Carlo code SAMPLE to make such a

calculation. Dr. Kaiser stated that they "used exactly the same data on the
probabilities of occurrence of the basic events in the cut sets as were used
in EEG-44 together with the same assumptions on the associated uncertainties."
The Kaiser calculations were for "Sensitivity Case 1" that appear in the Chan

et al. (1987) draft report.
It may be well to make the point that the data and uncertainties that Dr.

Kaiser refers to are all taken from Chan et al. (1987) and the references used

in that report. The results of the Kaiser calculations are as follows:
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TABLE 2. FREQUENCY OF OCCURRENCE OF A CATASTROPHIC WASTE
HOIST ACCIDENT (SENSITIVITY CASE 1)

(KAISER)
Mean 3.0x1077
Percentiles
2.5 2.5x107°
5.0 2.8x107°
50.0 1.0x1077
95.0 1.2x1078
97.5 1.3x107°®
99.0 4.2x1078
Chan et al. (1987) 5.2x1078

Note that Dr. Kaiser’'s calculation (Table 2) shows a "breach" of the value of
1.0x10°® for the probability of failure at a percentile value of approximately
93. After the calculation of the cumulative distribution function for this

case, a comparison will be made with Dr. Kaiser's results; see Table 7.

This report now proceeds to develop the methodology for calculating the
cumulative distribution function to describe the probability of a catastrophic
waste hoist accident at the WIPP, and applies it to "Sensitivity Case 1" in
the Chan et al. (1987) report.

Summary of Problem

Given P = P;xP,XP, (L

P is annual probability of catastrophic failure (total system failure).

Py is annual probability of electric power failure.

P, is annual probability of component failures due to valve malfunctions and
human errors.

Py is annual probability of failure of dump valves.
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P, 1is treated as a constant.

P, can be described in terms of sums and products of lognormal
distributions.

P, can be represented as a function of a lognormal distribution.

P, can be expressed as follows:

P, = Py + Prp + (Prrr-a) (Prrr-p) + (Pry-a) (Pry-p) (2)
P; = probability of failure of valve 45 due to local faults.
P;; = probability of failure of wvalve 51 due to local faults.

Pi11-a = probability of failure of valve 45 due to human error, type A.
P;11-g = probability of failure of valve 45 due to human error, type B.
= probability of failure of valve 51 due to human error, type A.
Piy.g = probability of failure of valve 51 due to human error, type B.

This formulation for P, accounts for 99% of the total brake system failure

(Chan et al., 1987, p. iii and Table 4.1-2, p. 37).

All 6 of the functions listed above may be described by lognormal

distributions.

A numerical check is now made using the point estimate wvalues (in Chan et al.,

1987) employed for the quantities that define P.

TABLE 3. ESTIMATE OF P USING MEDIAN VALUES

Py 0.0776 (EEG-44)
P; 9.02x1073
P;g 4,52x1073
Pipr = Prrr-a 8.1x1072 Product = 6.56x1073
Priz-a X Prrr-g Prrr-s 8.1x1072
Py = Prv-a 8.1x1072 Product = 6.56x1073
Pry-a X Pryp Pry-p 8.1x1072
Py(equ.2) 2.7x1072
P, 5.27x107°
P = P;xP,xP; = 1.1x1077

14



The references used by Chan et al. (1987), from which the above data are
derived, also state that these numbers (components of P, and P;) are the
median values of lognormal distributions; the references also give the 95

percentile values for the distributions.

The following table lists the median and 95 percentile values and the sources.

TABLE 4. DATA SOURCES

Median 95th

Term Value Percentile Source

Py 9.02x1073 4 x Med. Val. IEEE Std 500-1984, p. 1150
Pr; 4.52x1073 4 x Med. Val. IEEE Std 500 1984, p. 1150
Prrr-a 8.1x107? 5 x Med. Val. Swain and Guttman, 1983
Piri-s 8.1x1072 5 x Med. Val. Swain and Guttman, 1983
Pry-a 8.1x1072 5 x Med. Val. Swain and Guttman, 1983
Prv-p 8.1x1072 5 x Med. Val. Swain and Guttman, 1983

P, 5.27x107° 4 x Med. Val. IEEE Std 500-1984, p. 1150

Since the 7 terms in Table 4 correspond to lognormal distributions, it is now

possible to calculate all pertinent parameters in terms of the above data.

A general form for the lognormal distribution with the two parameters, p,o is

given by (Aitchison and Brown 1969):
dA(x) = 1/%0/2x exp(-1/202(log x - p)?)dx 3)

Where A is the cumulative distribution function.
The median of the distribution is given by: x = e

2
The mean is given by: x = b t1/20
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The mode is given by: x = ey -o?

The 95 percentile by: x = el *1.8437

i. e., the 95 percentile = (median value) el:8450

It is clear that from the data in the Table 4, one may calculate the two
defining parameters (u, o) for each of the 7 lognormal distributions. For
convenience in calculating: P; and P;; are multiplied by 10%; Pirr_a, Pryr-gs
Prv-a» Pry-p are multiplied by 1032 (since the A, B terms are multiplied later,

the product will have been multiplied by 10%); P, is multiplied by 10°.

TABLE 5. PARAMETERS IN LOGNORMAL DISTRIBUTIONS

P; et " o o? ep+1/202

(median) (mean)
I 9.02 2.1995 0.8427 0.7101 12.8652
I1 4,52 1.5085 0.8427 0.7101 6.4469
ITII-A 2.56 0.9405 0.9784 0.9573 4.1336
ITI-B 2.56 0.9405 0.9784 0.9573 4.1336
IV-A 2.56 0.9405 0.9784 0.9573 4.,1336
IV-B 2.56 0.9405 0.9784 0.9573 4.1336
Py 5.27 1.662 0.8427 0.7101 7.5162

Return to equation (1) and note that it is the product P,xP; that enters into

consideration. Combining with equation (2):

szPs = PIXP3 + PIIXP3 + (PIII'A)(PIII'B)XP3 +
(Pry-a) (Pry-p) XPy (4
= P;xP; + P;iXP; + Py;1XP3 + PryXP,

Thus, one has the sum of 4 terms, each consisting of the product of 2 or 3

lognormal distribution functions.
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Using a theorem from Aitchison and Brown (Theorem 2.2, p. 11), the product of
lognormal distributions is also a lognormal distribution. (This theorem is
called the "reproductive theorem").

If Xl is A(#l,alz); Xz is A(pz, 022); X3 is A(ps,aaz)

Then X;X, is A(p, + gy, 0,2 + 0,%) (5)

Also X,X,X; is Al + py + p3, 02 + 02 + 032) (6)

One may now construct a table for the 4 terms in equation 4.

TABLE 6. COMBINED PARAMETERS IN LOGNORMAL DISTRIBUTIONS
SENSITIVITY CASE 1

P, I o2 o et e”HIZFZ
(median) (mean)
P;XP; 3.8610 1.4202 1.1917 47.5128 96.64
P11XPg 3.1705 1.4202 1.1917 23.8194 48.45
Py1XPy 3.5430 2.6246 1.6201 34.5705 128.43
P1yxP; 3.5430 2.6246 1.6201 34.5705 128.43

Note: The factor 10™® was removed from the terms P;, P;;, Py, Pry, also the
factor 107> was removed from the term P;. Thus, the factor 107® is applied to
the entire entity in equation (4), for calculations based on Table 6. As a
check on the numerical calculations, compute the sum of the median values of
the 4 terms in Table 6. It should be equal to the product of the median

values for P, and Pj;.
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2.7x1072
5.27x107°

P,, median

P;, median

P,, median X P;, median = 1.42x1078

Compare with 1078x(sum of "median" values in Table 6)=1.40x10"%, Check is

satisfactory; the difference is due to rounding off errors.

The problem of describing the distribution function for P,xP; in equation (4)
has now been reduced to determining the distribution function of a variable
which is the sum of four random variables, each of which is described by a
lognormal function. We compute the distribution function using Fast Fourier

Transforms and the calculus of characteristic functions. See Appendix 1.

Figure 1 shows the density function for the sum of the four lognormal
distributions. Figure 2 displays the cumulative distribution function for the
sum of the four lognormal distributions. As stated previously the factor 1078
must be introduced to obtain P,xP;, the probability of brake system failure.
To complete the calculation for P, the probability of catastrophic waste hoist
failure, one must also introduce the factor P;, taken as 0.0776 in order to

make a comparison with the calculation of Dr. Kaiser.
Table 7 lists the mode, median, mean values and the various quantiles taken

from the computed distribution function for P,xP;. The other two columns list

the values for P, and the data from Dr. Kaiser, for comparison.
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Figure 1. Density function in arbitrary units for the sum of four lognormal distributions. The four log
normal distributions have parameters p,=3.8610, 6,=1.1917, 1,=3.1705, 6,=1.1917, 1,=3.5430,
o,=1.6201, u,=3.5430, 0,=1.6201, respectively.

0.3 |- —
02 H —

01 Hr oo oo —

0.0 i_"_l__“l"'T"T"'I""I""T""I""I""
0.0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 x10°

Figure 2. Cumulative distribution function for the sum of four lognormal distributions. The horizontal
lines depict quantiles at the 5,10, 50, 90, 95, and 99 percent levels. The factor 108 is introduced to
convert the abscissa values to probabilities.

Density and CDF for probability of failure of brake system for Sensitivity Case 1. Fig 182
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TABLE 7. SENSITIVITY CASE 1: COMPARISON OF RESULTS
Probability of Probability of Probability of
Failure of Catastrophic Catastrophic
Brake System [Waste Hoist Failure|Waste Hoist Failure
Percentile P,xP, P = P,P,P, P (Kaiser)
2.0 50.x1078 3.9x1078
2.5 53.5x1078 4.2x1078 2.5x107°
5.0 68.0x1078 5.3x1078 2.8x107°
10 89.5x1078 6.9x1078
Mode 19.9 125.5%x1078 9.7x1078
Median 50 248.5x1078 1.9x1077 1.0x1077
Mean 71 401.55x1078 3.1x1077 3.0x1077%
90 794 .5x1078 0.62x107®
95 1163.5x1078 0.9x107® 1.2x107®
95.8 1288.7x1078 1.0x107®
97.5 1664 .5x1078 1.3x1078 1.3x107
98 1861.0x107® 1.4x1078
99 2611.5x1078 2.0x107° 4.2x1078
99.9 7405.,0x1078 5.7x1078

*Dr. Kaiser did not list a percentile value for the mean.

Figure 3 is a graph of the cumulative distribution function (CDF) for P, the

probability of a catastrophic waste hoist accident at the WIPP for Sensitivity
Case 1. Note that if one were to use the mean value as representative of the
probability for a catastrophic accident, there would be a 29% chance that the

true value is greater.

Also, note that the value for P of 1.10x1077 based on

point estimates alone, corresponds to a percentile of 26%. Thus there is a

74% chance that the true value of P exceeds 1.10x1077.
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VI. DESIGN OPTION B-2, FSAR, MAY 1990, VOLUME III,
CHAPTER 7, APPENDIX 7B

As indicated in Table 1, the FSAR published a Design Option B-2, and had
calculated an annual probability of failure for the hydraulic brake system of
2.2x1077. The details of the DOE calculation are summarized in the IRA (U.S.
DOE 1990) in Table 4-19, pages 4-290, 291 under the title "Fault Tree

Quantification Results-Option B-2."

The analysis demonstrates the brake system failure rate is dependent upon the
failure rates for three main types of valves used in the hydraulic brake
system. These are listed in Table 8 along with the identification numbers of
the specific valves of each type used in the brake system. Also listed are
the data sources for the valve failure rates cited by the DOE, and additional

data sources for valve failure rates that were not cited by the DOE.

VALVE FATLURE RATES

Table 8 lists failure rates given by the references in IEEE Std 500-1984. The
values for the globe valves have the following significances. The IEEE
standard assumes the data can be represented by a log-normal distribution,
with the REC (recommended) value equal to the median of the distribution. The
high and low values represent the 95 and 5 percentiles respectively, thus
defining a 90% interval. The IEEE-sources offered no additional information
for the ball and motor operated valves, except for the listed REC values. The
IRA DOE/WIPP-89-010, 1990, chose point estimates, calculating a mean value
from the data for the globe valves, and simply adopting the REC values for
their point estimates for the ball and motor operated valves. With these

assumptions DOE arrived at an annual failure rate, given above, of 2.2x1077.
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TABLE 8.

DATA FOR VALVES IN DESIGN OPTION B-2

Valve Globe Valves, Manual Ball Motor Operated
Types Solenoid Valves Valves

(2 - 3.99 in)
Valve 25.1, 25.2, 56.3, 56.6 108, 45, 51
Numbers 25.3, 25.4

Data Sources
Cited by DOE

IEEE Std 500-1984
p. 1150; ref.15

IEEE Std 500-1984
p- 1044; ref. 4

IEEE Std 500-1984
p- 1023; ref. 2

Failure Rate

High 11.6x107 1/hr
Rec 2.89x107%1/hr
Low 0.72x10°®1/hr

Rec 0.65x107% 1/hr

Rec 6x107% 1/hr

IEEE #15: NUREG/CR-2232, |#4: Nonelectric #2: Interim

Reference Nuclear Plant Parts Reliability EGG-EA 5B16,
Reliability Data Data (NPRD-2) April 1982, Data
System (NPRDS) 1980 (Summer 1981, Reli- Summaries of
Annual Reports of |ability Analysis Licensee Event
Cumulative System |Center, Rome Air Reports of Valves
and Component Development Center, |at U.S. Commercial
Reliability Griffis A.F.B., Nuclear Power

N.Y. 13441-5700 Plants

Additional Nonelectronic NUREG/CR-1363,

Data Sources Parts Reliability EGG-EA-5816, Rev 1,

Not Cited Data (NPRD-3) 1985 April 1982, Data

By DOE Reliability Analysis|Summaries of

Center, Rome Air
Development Center
Griffis A.F.B., N Y
13441-5700

Licensee Event
Reports of Valves
at U.S. Commercial
Nuclear Power
Plants from Jan. 1,
1976 to Dec. 31,
1980, C. F. Miller,
W. M. Hubble, M.
Trojovsky, S. R.
Brown

NUREG/CR-2770, EGG
EA-5485 RG, Feb.
1983, Common Cause
Fault Rates for
Valves, Estimates
based on Licensee
Event Reports at
U.S. Commercial
Nuclear Power
Plants, 1976-1980
J. A. Steverson,
C. L. Atwood
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A comparison between the improved Design Option B-2 and Sensitivity Case 1
reported in Chan et al. (1987) follows. The data for the Sensitivity Case 1
appeared in Table 7, with the probability for failure of the brake system
listed as column 2. It is this probability that is desirable for comparison
purposes, since it is the quantity calculated for the Design Option B-2. It
will be recalled that in the calculation made for the Sensitivity Case 1, all
the component probability functions employed were lognormal. In order to make
the comparison with the Design Option B-2 case, it is assumed that all the
valve failure rates for Design Option B-2 can be described as lognormal
functions, with the listed REC values treated as median values. It will also
be assumed that the multiplier, divisor factors to obtain 5 and 95
percentiles, are the same for the ball and motor operated valves as for the
globe valves. Later in this report information from other data sources will
be utilized in additional computations that are more appropriate for ball and

motor operated values.

For clarity in following the computations for Design Option B-2, the same
format will be used as in Table 4-19, pages 4-290, 291 of the IRA (U.S. DOE
1990), Volume III, Chapter 7, Appendix 7B (see Table 9). For convenience the
Design Option B-2 is simply called Case I.

In Table 9 the first column lists the cutset followed by the valve number and
type in columns 2 and 3." The fourth column lists the hourly failure rate.
If the event is due to common cause, then the appropriate value of b is used
to obtain P, in column 5. (Note: in cutset 1(a): b = 0.1; in 2(a): b = 0.04;
for 3(a): b = 0.1). An annual service time of 2,048 hours is assumed, and
this is multiplied by Q or P, to obtain the Event Probability per annum (EP)

as column 6.

As a convenience to obtain numbers close to unity, introduce the multiplier
10° to obtain column 7. Since each set of the cutset components (a),(b) or

(a),(b),(c) are ultimately to be multiplied, the multiplier 10° is distributed

*The cutset number represents a mode of possible failure due to the
failures of the valve types listed. Thus the cutset numbers enumerate the
possible failure modes which are deduced from a fault tree analysis.
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among the components in column 6 to obtain column 7.

normal distributions the median value is given by e” where u is one of the

lognormal parameters.

Thus column 7 is called e, and column 8 yields u.

Recall that for log-

TABLE 9. CALCULATIONS FOR LOGNORMAL PARAMETERS, DESIGN OPTION B-2 (CASE I)
Cutset| Valve | Valve Q median P.. = bQ 10°%E. P
No. No. Type 1/hr 1/hr E.P = et o
1 (a) |25.2.4 |Globe; 2.89x10°¢ [2.89x1077 5.9x107* 5.9 1.77 .8448
Motor
(b) |108 Operated [6.00x1078 1.23x107* 12.3 2.51 .8448
2 (a) |25.1.2 |Globe; 2.89x10°° [0.1156x107°® |2.4x107* 2.4 0.88 .8448
25.3.4
(b) |108 Motor 6.00x1078 1.23x107* 12.3 2.51 .8448
Operated
3 (a) |56.3.6 |Ball; 6.50x10"7 |6.50x1078 1.33x107* 1.33 0.285 .8448
Motor
(b) |108 Operated [6.00x1078 1.23x107* 12.3 2.51 .8448
4 (a) |51 Motor 6.00x10°8 1.23x107* 1.23 0.207 |0.8448
Operated;
(b) |108 Motor 6.00x1078 1.23%x107* 12.3 2.51 .8448
Operated
5 (a) |45 Motor 6.00x1078 1.23x107* 1.23 0.207 |0.8448
Operated;
(b) |108 Motor 6.00x1078 1.23x107* 12.3 2.51 .8448
Operated
6 (a) |25.4 Globe; 2.89x10°8 5.9x1073 5.9 1.77 .8448
Motor
(b) |108 Operated; |6.00x1078 1.23x107* 0.123 |-2.096 |0.8448
(c) [25.2 Globe 2.89%x107® 5.9%x1073 5.9 1.77 .8448
7 (a) |25.4 Globe: 2.89%x1076 5.9%1073 5.9 1.77 .8448
Motor
(b) |108 Operated; [6.00x1078 1.23x107* 1.23 0.207 |0.8448
(¢) |56.3 Ball 6.50x1077 1.33x1073 0.133 |-2.017 |0.8448

Cutsets 8 through 14 are

numerically the same as cutset 7.

Cutsets 1-14 account for 99% of the total of 26 cutsets in Table 4-19, and are

considered a sufficiently good approximation to the total of 26 cutsets in

FSAR Table 4-19.
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The value of ¢ may be obtained by using the relations between the median
value, and the 5,95 percentiles:

UB/median = el:8430

Thus 11.6/2.89 = 4.0138 = ol-8450
1.6450 = 1.3897
o = 0.8448

This value of o is listed in the last column. [Note: In the calculation for
the Sensitivity Case 1 (Chan et al. 1987), the ratio of the 95 percentile to
the median was rounded off to 4 (Table 4). This led to the slightly smaller
value of o0 = 0.8427 used in Table 5.]

A numerical comparison with the value of 2.12x10°7 obtained in Table 4-19 of
the IRA (U.S. DOE 1990) can be made by summing the EP values in Table 9.
However to be consistent with Table 4-19 one must use mean values instead of
the medians for the globe terms. These terms appear in cutsets 1(a), 2(a),
6(a), 6(c), 7(a). The mean values are computed as follows:
Mean = Median x e'/?9%
with o = 0.8448
e'/29% = 1.4288
Thus 5.9 x 1.4288 = 8.4
2.4 x 1.4288 = 3.4
Then P = 10™° [8.4 x 12.3 + 3.4 x 12.3 + 1.33 x 12.3
+1.23 x12.3 + 1.23 x 12.3 + 8.4 x 0.123 x 8.4
+ 8 x 8.4 x 1.23 x 0.133]
211x107° = 2.11x1077

This is in good agreement with the value of 2.12x1077 of Table 4-19 of the
FSAR.

Table 10 lists the values of the u, o parameters derived in Table 9.
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TABLE 10. VALUES OF THE PARAMETERS u, o FOR DESIGN
OPTION B-2 (CASE I)

Py B 4 Py B 4
I-a 1.77 0.8448 I 4.28 1.1947
-b 2.51 0.8448
II-a 0.88 0.8448 II 3.39 1.1947
-b 2.51 0.8448
III-a 0.285 0.8448 IIT 2.795 1.1947
-b 2.51 0.8448
IV-a 0.207 0.8448 v 2.717 1.1947
-b 2.51 0.8448
V-a 0.207 0.8448 v 2.717 1.1947
-b 2.51 0.8448
VIi-a 1.77 0.8448 VI 1.444 1.4632
-b -2.096 0.8448
-c 1.77 0.8448
VII-a 1.77 0.8448 VII -0.040 1.4632
-b 0.207 0.8448
-c -2.017 0.8448

Note: VIII, IX, X, XI, XII, XIII, XIV are the same as VII. Since P;_, is
multiplied by P, etc., one can use the "reproductive theorem." See

equations (5) and (6) to obtain the right hand part of Table 10.

i=XIV

Thus P = 107° x Z P,

i=I

The problem is now reduced to computing the density function and cumulative
distribution function of a random variate, P, which is defined as the sum of
fourteen independent random variables, each of which is log normally

distributed, with parameters u, o listed in Table 10. See Appendix 1 for the
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methodology of the calculation.

The probability density function for the

Design Option B-2 case (Case I) is given in Figure 4. The cumulative

distribution function (CDF) is given in Figure 5.
introduced to convert the abscissa values to probabilities.

the cumulative distribution function for probability of failure of the brake

The factor 1079 is

system.
TABLE 11. PROBABILITY OF FAILURE OF BRAKE SYSTEM VS. PERCENTILES
FOR DESIGN OPTION B-2 (CASE I), SENSITIVITY CASE 1
Probability of Probability of Failure
Percentile Failure (Case I) Sensitivity Case 1
1.0 0.077x1078
10.0 0.130x1078 0.90x1078
50.0 0.263x107® 2.48x107®
Mean 66.5 0.341x107® 4.01x107®
71 percentile
85.0 0.513x107®
95.0 0.811x107® 11.6x107®
99.0 1.48x107® 26.1x107°®
99.78 2.49x1078
99.9 74.0x1078

Table 11 lists the failure probabilities for both Case I and Sensitivity Case

1. Note that the mean for Case I is less than that for the Sensitivity Case 1
by almost a factor of 12. The IRA (U.S. DOE 1990) value of the probability of
failure for the brake system for Case I is 2.2x1077,
of probability in Figure 6 for Case I, the percentile is 36%.

64% likelihood that the failure rate is greater than a rate based on point

estimates alone.
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Figure 4. Density function in arbitrary units for Case |.
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Figure 5. Cumulative distribution function for Case 1. The factor 10 is introduced to

convert abscissa values to probabilities.

Density and CDF for probability of failure of brake system, Case | (Design Option B-2).
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VII. DATA SUMMARIES AND UNCERTAINTIES OF LICENSEE EVENT REPORTS
OF VALVES AT U.S. COMMERCIAL NUCLEAR POWER PLANTS:
VALUES OF PARAMETERS FOR MOTOR OPERATED VALVES

Table 9 shows the importance of valve 108, a motor operated type, since it
appears in all the cut sets. In fact in the FSAR, Table 4-20, page 4-292,
valve 108 is listed as the most important component in the analysis of failure
modes for option B-2. Thus, all information regarding the performance and

failure rates of motor operated valves is important to this study.

The only reference for this type of valve in the DOE study was to the IEEE Std
500-1984, p. 1023, reference 2, (see Table 8). As indicated in Table 8 that
reference was to an interim report published by EG&G as EGG-EA-5B16, April
1982, Data Summaries of Licensee Event Reports of Valves at U.S. Commercial
Nuclear Power Plants. The data from page 1023 is included for convenience as
Table 12. A revision with more data was also published by EG&G as NUREG/CR-
1363, EGG-EA-5816, Rev. 1, April 1982 by C. F. Miller, W. H. Hubble, M.
Trojovsky, and S. R. Brown. The title is almost the same as the interim
report, but with some additional specifics of the time frame covered, "Data
Summaries of Licensee Event Reports of Valves at U.S. Commercial Nuclear Power

Plants; January 1, 1976 to December 31, 1980."

Mr. Miller granted permission for using page 386 from NUREG/CR-1363, see Table
13. Note that Table 13 is also for motor operated valves (plugged), the same
as Table 12. Also, Table 13 indicates that command faults are included.

Table 13 includes the single datum of 6.0x10°® in Table 12, but has
considerably more information. Table 13 indicates that the 6.0x107® is an
estimated upper 95 percent confidence bound with no failures recorded. A
number of additional data points are included in Table 13, along with 5% and
95% confidence factors. Possibly the best representative set for this table
is the "overall category", which includes an LER rate estimate along with 5%
and 95% confidence factors. Since the data from NUREG/CR-1363 (Miller et al.
1982) is more inclusive than the IEEE source, a recalculation of the Case I,
Design Option B-2 will be made later in this report, using the data from Table

13, "the overall" set of numbers.
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TABLE 12. DATA ON FAILURE RATES FOR MOTOR OPERATED VALVES

Source: TIEEE Std 500-1984, p 1023

Failure Mode: Plugged

Failure/10° 0.06

TABLE 13. DATA FROM NUREG/CR-1363: EGG-EA-5816, REV. 1 APRIL 1982 (page 386)
BY C. F. MILLER, W. H. HUBBLE, M. TROJOVSKY, S. R. BROWN

Final Statistics
Valve--Operator (Motor)--Plugged (Command Faults Included)

Standby
Failure Rate
(Failures/Hours)
BAB.&WIL. 2.5x1077*

4.7
COMB . ENG. 1.1x1077
19.5

WESTINGH. 5.7x1078

PWR'S 5.4x1078

GE (BWR'S) 6.0x107 8%

(x)2.3  (7.36x107%)
OVERALL 3.2x1078
(+)2.9 (1.10x107%)

*denotes upper 95 percent confidence bound when no failures recorded

XX - Upper 95% Confidence Multiplier
Y,YE-YY - LER Rate Estimate
Z,Z - Lower 5% Confidence Divisor
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As indicated in Table 8 there is an additional report from the EG&G group
published shortly after NUREG/CR-1363 (Miller et al. 1982). It is NUREG/CR-
2770, EGG-EA-5485 RG, February 1983 (Steverson and Atwood 1983). The report
title is "Common Cause Fault Rates for Valves, Estimates Based on Licensee
Event Reports at U.S. Commercial Nuclear Power Plants, 1976-1980," by authors
J. A. Steverson and C. L. Atwood.

As the title suggests, and the authors confirm in their report, NUREG/CR-2770
(Steverson and Atwood 1983) analyzes the data collected and reported in
NUREG/CR-1363 (Miller et al. 1982). 1Indeed the latter report is the first
main reference for NUREG/CR-2770 (Steverson and Atwood 1983). Additionally,
the authors of NUREG/CR-2770 consulted closely with C. F. Miller, the senior
author of NUREG/CR-1363.

An important part of NUREG/CR-2770 is a discussion of imperfections in the

data, obtained from Licensee Event Reports (LERs).

"LER reporting policies may vary from plant to plant."

"An important deficiency in the data is the imperfect population
counts . . . ."

"A final major imperfection in the data is lack of precise detail
in the LERs. The reports are often so vaguely worded that the
type of valve, number of failed valves, failure mode, or failure
cause is uncertain" (underlining added for emphasis).

Another important defect in the LERs is the fact that many of them do not
specify the valve type, "but do make it clear that the valve is operated
remotely. Since motor-operated valves are the most common type, Miller et
al., believe that most of the failures of remotely operated valves are
actually failures of motor-operated valves." For that reason in NUREG/CR-
2770 (Steverson and Atwood 1983) "LERs for remotely operated valves are pooled
with those for motor-operated valves, and estimates are given on the basis of
the pooled data." The authors then conclude "These estimates are upper bounds
on what would be found for motor-operated valves if more complete information

were available" (underlining added for emphasis).
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In the light of these views, one must regard all calculations as establishing
rather rough bounds. The data are not precise enough to permit stronger
statements. Clearly the distributions being calculated will reflect the great

variability in the data available.

The authors of NUREG/CR-2770 (Steverson and Atwood 1983) found it convenient
to use a two-parameter gamma distribution to describe the data, although they
state that a lognormal distribution might work equally well. Their data are
presented with a mean value and a 90% confidence interval (5% and 95%

percentiles).

Data on remote/motor operated valves for failure to remain open (plugged) are
contained in the report NUREG/CR-2770 (Steverson and Atwood 1983), and are
based on Licensee Event Reports. Some definitions used in the report are in

order.

The authors define a failure as "an event in which the valve itself needs
repair in order to perform as designed. A command fault is an event in which
the valve does not fail, but it does not function as desired due to external
inputs or lack of inputs"; see pages 2 and 3 of NUREG/CR-2770 (Steverson and
Atwood 1983).

The authors use the term "shock" to denote an event, external to the valve or
valves, that can cause failures. They distinguish between non-lethal shocks
and lethal shocks. Non-lethal shocks refer to external events which may cause
valves in the affected system to fail independently of each other, each with
some probability. A lethal shock is defined as an external event which causes
every valve in the affected system to fail. However, no such events (lethal

shocks) were recorded in the LERs.

Some additional definitions:

Lambda(+) = Rate of non-lethal shocks that cause at least one valve to be
inoperable.
R, = Rate at which a specific valve becomes inoperable, either as an

individual fault or due to a shock.

34



The data of interest on page 92 of the report, NUREG/CR-2770 (Steverson and
Atwood 1983), (see Table 14), include both failures and command faults,
consistent with Table 13 from NUREG/CR-1363. The quantity M is the number of
components subject to failure in the various systems included in the total

data bank. The values listed include the triplet: 5 percentile, mean, 95

percentile.
TABLE 14. COMPARISON OF FAILURE DATA FOR
REMOTE/MOTOR OPERATED VALVES
Source 5% Confidence Mean 95% Confidence

IEEE, p 1023;
EGG-EA-5B16 6x1078
April 1982

NUREG/CR-1363
EGG-EA-5816 1.10x10°8 3.2x1078 7.36x1078
Rev 1, April

1982; "overall"™

Table 13

NUREG/CR-2770 lambda(+)

EGG-EA-5485RG 0.82x1077 3.6x1077 7.9x1077
Feb. 1983

R, (M-1 case)
1.5x1077 4.8x1077 14x1077

All the data in Table 14 derive from a single source, the LERs. The data from
NUREG/CR-2770 reflect the consequence of pooling the data from remotely
operated valves with the motor operated valves, as per the quotation from

NUREG/CR-2770 (Steverson and Atwood 1983).
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VIII. CALCULATIONS OF CUMULATIVE DISTRIBUTION FUNCTIONS (CDF)
BASED ON LICENSEE EVENT REPORTS OF VALVES AT U.S.
COMMERCIAL POWER PLANTS

In Chapter VI calculations were made of the CDFs for Case I, utilizing assumed
lognormal distributions for the failure data for the manual ball valves and
for the motor-operated valves. An arbitrary assumption was also made for the
value of o, a parameter appearing in lognormal distributions. Now more
appropriate calculations will be made using failure data from NUREG/CR-1363
(Miller et al. 1982) and from NUREG/CR-2770 (Steverson and Atwood 1983) for
the motor-operated valves, and failure data from NPRD-3 (Rossi 1985) for the
manual ball valves (Tables 14 and 15). However, a step-by-step process will
be followed in introducing the new data, and the new distributions that are
appropriate for them. Initially the calculations will be made using the new
data for the motor-operated valves, with two parameter gamma distributions,
while retaining the old data and lognormal distributions for the ball valves.
This will permit an assessment of the impact of the changes associated only
with the motor-operated valves. Following those calculations will be
additional ones that introduce the NPRD-3 data for the manual ball valves,

with the use of gamma and exponential distributions.

The basic failure rates for the motor-operated valves are summarized in Table
14. They include the "overall" rates from NUREG/CR-1363 (Miller et al. 1982).
The additional data from NUREG/CR-2770 (Steverson and Atwood 1983) for
lambda(+) and R; reflect failure rates which include the influence of external
factors (shocks), and include the fact that "LERs for remotely operated valves
are pooled with those for motor-operated valves, and estimates are given on
the basis of the pooled data. These estimates are upper bounds on what would
be found for motor-operated valves if more complete information were

available" (Steverson and Atwood 1983, p. 6).

METHODOLOGY FOR USING TWO PARAMETER GAMMA DISTRIBUTIONS

The following notation is found in Karl Pearson’'s "Tables of the Incomplete

Gamma Function," Cambridge University Press, 1957.
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The frequency curve for which the incomplete gamma function forms the

probability integral may be written as:

A(Ax)Pe™* >0
f(x) = — ; p+1>0 7N
r (p+l)

A and p are parameters which can be related to the mean, X, and the standard

deviation, o.

It can be shown that the standard deviation, ¢, and the mean, x, are given by:

+1 Jp+l
LA, 4 (8)
A A
The probability integral may be written as:
X Pa~AX
OfA(Ax) e “*dx
I(x) =
r'(p+l)
Let v = Ax
V,
JvPeVdv
I(v) = 9
T'(p+l)
Pearson then replaces the upper limit value, v, with another parameter, u,
defined as follows:
v = w/p+l
The reason for this substitution may be understood from the following:
Jp+l
Since o = and v = Ax
Th v Ax X %)
en u = = - —
Jp+l Jp+l o
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Thus u is x expressed in units of the standard deviation, o. The probability

integral may now be written as:

uw/p+l
f e VvPdv
I(u, p) = 0 (10)
r'(p+1)

Pearson’s tables list the values of I in terms of the two parameters u and p.

An example will illustrate how the tables may be used.

Assume that failure data produce the values for the 5 and 95 percentiles as:

Xg = 0.3072 ; Xgs = 2.867

Note that x = ou; then

Ugs/Us = Xgs/Xs = 2.867/0.3072 = 9.33

Note also the values of the Integral I in this case are I5 = 0.05 and Iy =
0.95. In the tables one finds two values of tabulated p for which the ratio
ugs/us will bracket the ratio 9.33; e.g., for p = 1.5 and the I values of 0.05
and 0.95, us = 0.359 and ugs = 3.50; the ratio is 9.75. Similarly for p = 1.6
one finds the ratio of ugs/u; = 9.25. By interpolation one may compute p =
1.562. Again, by interpolation with this value of p one may find ug = 0.377

and ugs = 3.515. The ratio is a satisfactory 9.32.

One may calculate A from equation 9:

u./p+l
o= 2P 1 963
X5
_ p+l
X = ——;—— = 1.304 (from equation 8)

38



As a check a numerical calculation was made of the mean value of the frequency
curve, using the above values for p and A. The result was a satisfactory

1.305.

With the values of A and p determined, one has the complete description of
this particular frequency distribution and of the associated probability

integral.

CALCUIATIONS FOR CASE I-GAMMA

Calculations of the frequency distribution and CDF for Case I involved using
the failure data from the IEEE sources only, plus some assumptions of
lognormal distributions for the motor-operated and manual ball valves. The
present calculation, Case I-gamma, will make two changes from Case I. A two
parameter gamma distribution will be used for the motor-operated valves, and
its failure data will be the "overall" data from EGG/CR-1363; see Table 14.
Since the mean failure rate of 3.2x1078(1/hr) is less than the 6.0x1078(1/hr)
rate used in Case I, one expects the probabilities to be less on that account.
However the change from a lognormal distribution to a two parameter gamma
distribution will have its effect, and the result will be a consequence of

both changes.

From Table 14:
Failure rates per hour:
5 percentile: 1.10x1078
mean: 3.2x1078

95 percentile: 7.36x107®

Any two of the three parameters will serve to determine p and A of the gamma
distribution. It was suggested that the mean and 95 percentile values may be

more reliable.™

This choice alters the detail of the calculation for A and p
slightly from what was discussed previously in this report. (Later in this

report both methods are used with similar results.)

**Private communication, Dr. C.L. Atwood
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A work load of 2,048 hours per annum is assumed. Thus, the annual rates

become:
mean: 3.2x1078x2,048 = 0.6554%x107*
95 perc: 7.36x1078x2,048 = 1.5073x107*

Since it is convenient to work with numbers near unity, introducing a

multiplier factor of 10* permits these definitions of the x quantities:

X = 10%%0.6554x107* = 0.6554
Xgs = 10°%x1.5073x107* = 1.5073

From equations (8) and (9)

p+l

A
u/p+l
A

X =

In equation (9) let x, u, refer to the 95 percentile:

ugs/p+l

A

Xgs5

Take the ratio of each side of equations (10) and (8).

Xes _ Yos
X Jp+l

Since the ratio of the (Xgs/X) is known, one may find p from the Pearson

Tables. In this case from equation (11):

Ugs 1.5073 2 2998
Jp+1 0.6554 ’

From the Tables for p = 1.2, ugs = 3.416
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Ugs 3.416
Jp+l

= 2.303

This is a sufficiently close approximation. One may now calculate A from

equation (8).

p+l 2.2
X 0.6554

A= = 3.3567

Since the system includes valves described by lognormal parameters and by
gamma distribution parameters, Table 15 outlines the various parameter values.

The values for the globe and ball valves are the same as the EP values listed
in Table 9 for Case I.
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TABLE

15. CALCULATIONS FOR CASE I-GAMMA

Cutset| Valve Valve
No. No. Type EP 10® EP m o A p+l
1(a) 25.2.4 |globe; .8786x107* |5.8786 1.771310.8448
(b) 108 motor .6554x10™* |0.6554
operated [1.5073x107% [1.5073 .3567} 2.20
2(a) 25.1.2 |globe; .4354x107%  |2.4354 0.8901)|0.8448
25.3.4
(b) 108 motor 0.6554
operated 1.5073 .3567| 2.20
3(a) 56.3.6 [ball; .33x1074 1.33 0.2852|0.8448
(b) 108 motor 0.6554
operated 1.5073 .3567| 2.20
4(a) 51 motor 0.6554
operated; 1.5073 .3567| 2.20
(b) 108 motor 0.6554
operated 1.5073 .3567( 2.20
5(a) 45 motor 0.6554
operated; 1.5073 .3567| 2.20
(b) 108 motor 0.6554
operated 1.5073 .3567|( 2.20
6(a) 25.4 globe; .8786x107® |5.8786 1.7713]0.8448
(b) 108 motor 0.6554
operated; 1.5073 .3567| 2.20
(c) 25.2 globe .8786x1073 |5.8786x1072 |-2.8339|0.8448
7(a) 25.4 globe; .8786x107® |5.8786 1.7713(0.8448
(b) 108 motor 0.6554
operated; 1.5073 .3567] 2.20
(c) 56.3 ball .33x1073 1.33x1072 -4.3200(0.8448

Cutsets 8 through 14 are numerically the same as cutset 7.

Table 16 combines

the lognormal distributions in Table 15, using the reproductive theorem; see

equations 5 and 6.
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TABLE 16. PARAMETER VALUES FOR CASE I-GAMMA

Term Lognormal Distribution Gamma Distribution
Number
U o A p+l
P; -A 1.7713 0.8448
-B 3.3567 2.20
P;; -A 0.8901 0.8448
-B 3.3567 2.20
PIII 'A 0.2852 0.8448
-B 3.3567 2.20
P;y -A 3.3567 2.20
-B 3.3567 2.20
Py -A 3.3567 2.20
-B 3.3567 2.20
Py; -A -1.0626 1.1947
-B 3.3567 2.20
-B 3.3567 2.20

Terms VIII through XIV have the same parameter values as Term VII.
i=XIV
P = 1078 x > P;.a X Py
i=I

Table 16 lists the parameter values for Case I-gamma (u, o for the lognormal

and A, p+l for the gamma distributions.).

Figure 7 gives the probability density for Case I-gamma. Figure 8 gives the
CDF for this case. The factor 107 is introduced to convert the abscissa
values to probabilities. See Appendix 1 for the methodology of the
calculation. A probability vs. percentile graph of Case I-gamma is presented

in Figure 6, permitting a comparison with Case I (Design Option B-2).
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Figure 7. Density function in arbitrary units for Case I-gamma.
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Figure 8. Cumulative distribution function for Case l-gamma. The factor 108 is introduced
to convert abscissa values to probabilities.

Density and CDF for probability of failure of brake system
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It was stated earlier that Cases I and I-gamma differed in two respects. The
point estimate failure rate was changed for the motor operated valve from
6.0x107% to 3.2x107® ("overall"), and the distribution from lognormal to a two
parameter gamma distribution. In order to complete the picture, a calculation
was also made (not described in this report) of Case I-R in which the point
estimate value was changed, but not in the distribution, which remained

lognormal.

Table 17 lists the defining parameters and the values of the probabilities at

mean and 95th percentiles in order to permit comparisons.

TABLE 17. COMPARISON OF CASES I; I-R; I-GAMMA

Motor Operated Valve Ball Valve Mean 95 per-

Case (x10*®) |centile
distribution| point est jdistribution| point est (x10%8)

I lognormal 6.0x1078 lognormal 0.65x107® 0.34 0.81
I-R lognormal 3.2x1078 lognormal 0.65x107® 0.12 0.27
I-gamma | gamma 3.2x1078 lognormal 0.65x107® 0.32 0.51

Table 17 indicates that diminishing the initial point estimate value for the
motor operated valve by a factor of approximately 2 will cause a reduction in
the mean and 95 percentile values of the probabilities by a factor of
approximately 3. Similarly a change in distribution only from lognormal to
gamma for the motor operated valve brings a factor of increase of

approximately 2 (95 percentile) to 3 (mean value). See Figure 6.

CALCUIATIONS FOR CASE V-R

Case V-R uses data for the motor operated valves derived from the LERs, Table
14, NUREG/CR-2770, for R; (M-1). As in the calculation for Case I-gamma,a two

parameter gamma distribution is used to describe the failure data. The two
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data items used will be the mean and 95 percentile values for the failure
rates.
mean = 4.8x1077

1.4x1078

95 perc.

The same methodology described previously is now used to obtain p and ).

Assume an annual work load of 2,048 hours.

mean = 4.8x1077x2,048 = 0.9830x1073
95 perc. = 1.4x1075x2,048 = 0.2867x1072

Using a normalization factor of 10%:

0.9830x1073x10% = 0.9830

X

Xgs = 0.2867x1072x10% = 2.867

X 2.867 U

2 - 2 - 2.9166
X 0.9830 /p+1

From Pearson'’s tables p 0.081; p+1=1.081

p+l 1.081
Also,\ = — = = 1,0997
X 0.9830

One may now set out Table 18 which is the equivalent of Table 15 for this

case, retaining the EP values for the globe and ball valves.
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TABLE 18.

CALCULATIONS FOR CASE V-R

Cutset Valve Valve
No. No. Type EP 10°xEP 7 o A p+l
1(a) 25.2.4 | globe 5.8786x10™* |0.58786 -0.5313(0.8448
(b) 108 motor 0.9830
operated 2.867 .0997| 1.081
2(a) 25.1.2 globe 2.4354x107% (0.24354 -1.4125(0.8448
25.3.4
(b) 108 motor 0.9830
operated 2.867 .09971 1.081
3(a) 56.3.6 | ball 1.33x107* 0.133 -2.0174(0.8448
(b) 108 motor 0.9830
operated 2.867 .0997] 1.081
4(a) 51 motor 0.9830
operated 2.867 .0997] 1.081
(b) 108 motor 0.9830
operated 2.867 .0997] 1.081
5(a) 45 motor 0.9830
operated 2.867 .0997( 1.081
(b) 108 motor 0.9830
operated 2.867 .0997] 1.081
6(a) 25.4 globe 5.8786x10™® [5.8786 1.7713|0.8448
(b) 108 motor 0.9830
operated 2.867 .0997) 1.081
(c) 25.2 globe 5.8786x1073 |5.8786x107® |-5.1364|0.8448
7(a) 25.4 globe 5.8786x107% |5.8786 1.7713]0.8448
(b) 108 motor 0.9830
operated 2.867 .09971 1.081
(¢) | 56.3 ball 1.33x107° 1.33x107? -6.6226/0.8448

Table 19 gives the final (u, o) and (), p+l) values for the

reproductive theorem to combine the lognormal distributions

7, Table 18.

Note that the difference in EP values for the

valves (3a, 7c; la, 2a, 6a and 7a) by a factor of 10 arises

cutsets, using the

in cutsets 6 and

ball and globe

from common cause

failures occurring in cutsets (la, 2a) for the globe valves, and (3a) for the

ball valves.
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TABLE 19. PARAMETER VALUES FOR CASE V-R

Cutset Lognormal Distribution Gamma Distribution
Number
I3 g A p+l
P; -A -0.5313 0.8448
-B 1.0997 1.081
P -A -1.4125 0.8448
-B 1.0997 1.081
PIII 'A ‘2.0174 0.8448
-B 1.0997 1.081
Py -A 1.0997 1.081
-B 1.0997 1.081
Py -A 1.0997 1.081
-B 1.0997 1.081
Py -A -3.3651 1.1947
-B 1.0997 1.081
PVII 'A '4.8513 1.1947
-B 1.0997 1.081

Terms VIII through XIV have the same parameter values as Term VII.

Figures 9 and 10 give the probability density and the CDF for Case V-R.

Abscissa values are multiplied by 107® to produce probabilities.

1 for the methodology of the calculation.

Case V-R, a calculation was made (details not included in this report) for
Case V-lambda (+), using the data from Table 14 for the motor operated valves.
We also decided to make a calculation similar to case V-R, but to base it on

the use of the 5% confidence value and the 95% confidence value (Table 14).
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Figure 9. Density function in arbitrary units for Case V-R.
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Figure 10. Cumulative distribution function for Case V-R. The factor 10 is introduced to
convert abscissa values to probabilities.

Density and CDF for probability of failure of brake system
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The purpose was to learn whether the results would be similar to the
calculation based on the use of the mean and 95% confidence values. The "5%,
95%" calculation is called Case V (details not included in this report).

Table 20 compares the results for Cases V, V-R and V-lambda(+). The data for
Case I-gamma is also included, since it permits a calculation of the
sensitivity with which probability values depend on the initial point estimate
failure rates. See Figure 11 for graphs of V, V-R and V-lambda(+) for the

cumulative distribution functions for probability of failure of the brake

system.
TABLE 20. COMPARISON OF CASES V, V-R, V-LAMBDA(+), I-GAMMA
Failure Data for Motor Operated Valves from Tables 14, 15.
Cumulative Distribution Functions(CDF)
Point Estimate Failure Proba-| Proba-
Rates (1l/hr) bility| bility
Case x108 x10°8
5% 95%
Confidence| Mean Confidence A pt+l Mean |95 perc
v 1.5x1077 1.4x107® 1.963 2.562 25.6 31.9
V-R 4,8x1077 1.4x107® 1.0997| 1.081 22.0 29.6
V-1lambda(+) 3.6x1077 7.9x1077 3.4975( 2.5787( 15.6 19.6
1-gamma 3.2x1078 | 7.36x107® | 3.3567( 2.20 0.32 0.51

The values for the probability, both mean and 95 percentile, for the two Cases
V and V-R, are very similar, differing by only 10% to 15%. An analysis, based
on Cases V-R, V-lambda(+) and I-gamma, of the scale effect of increasing the
mean failure rate of the motor operated valves indicates a power law

dependence for the probability, P values:

Approximately, (P)gs perc ~ (mean point estimate failure rate)?!->

(P)pean ~ (mean point estimate failure rate)?-®
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The faster than linear increase in probability (P) values as a function of the
mean failure rate for motor operated valves can be understood by looking at

Tables 15 and 18. The sensitiQity of the P values results from the presence
of the parameters for the motor operated valves in each term, and doubly in

cutsets 4 and 5.

IX. VALUES OF PARAMETERS FOR MANUAL BALL VALVES

The failure rate for manual ball valves used in the DOE reports is taken from
IEEE Std 500-1984, p. 1044, reference 4:
NPRD-2 (Reliability Analysis Center 1981), summer 1981; see Table 8; the
listed value is 0.65x107® (1/hr).

Nonelectric Parts Reliability data,

This report has been superseded by
Nonelectronic Parts Reliability Data, NPRD-3, 1985 (Rossi 1985). A portion of

the relevant data, page 150, is given in Table 21.

TABLE 21. FAILURE RATES FOR BALL VALVES PER MILLION HRS.
Series Point 20% Lower | 80% Upper | # of # of Operating
Estimate Interval Interval Records ([Failures Hours (10°)
A 9.861 7.820 12.456 5 17 1.724
B 0.647 0.400 1.029 2 5 7.723

As the table indicates one series corresponds to the NPRD-2 (Reliability

Analysis Center 1981) value of 0.65x107®1/hr. an additional series

The

authors state that the data can be represented by an exponential distribution,

However,

of data produces the failure rate of 9.861x10™8, a factor of 15 greater.

a special case of the two parameter gamma distribution. Actually, as will be
shown later in this report, both distributions produce similar results in the
present case. The point estimates (means) are calculated as the ratio of the

number of failures to the number of operating hours.
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In Chapter VIII, calculations of CDFs were based on data from Licensee Event
Reports for motor operated valves. In those calculations, the data for manual
ball valves were based on the IEEE older reference NPRD-2 (Reliability
Analysis Center 1981) (see Table 8). The distribution used with those data
was lognormal. In this chapter, data for the manual ball valves will be taken
from the more recent NPRD-3 (Rossi 1985), and will include both the A and B

series (see Table 21).

CALCUIATIONS FOR CASE VII-B

This case is similar to Cases V-R and V except for the change from a lognormal

to a two parameter gamma distribution for the manual ball wvalves.
From Table 21:

The point estimate (mean) failure rate for series B is 0.647x10°%(1/hr). call

the 20% lower interval and the 80% upper interval failure rates Quy and Qg.

Qzo = 0.400%x107%(1/hr)
Qgo = 1.029x1078(1/hr)

Then the event probabilities per annum (EP) are:

EP,y = Quox2,048(hrs) = 0.8192x1073
EPgy = QgoX2,048(hrs) = 2.1074x107°

Use 10% as a multiplier to obtain "x" values:

Xp9 = 103(EP),, = 0.8192
Xgg = 10%(EP)g, = 2.1074
Xgo Ugg 2.1074

The ratio = = —— = 2,572 = 2,57
Xa0 Uyg 0.8192
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From Pearson’s Tables one finds:

P=2.5
uzo = 1.0211
u
20 - 2.566 = 2.57
Uzg
w/p+1
Thus - P
X
u,/p+1 1.0211/3.5
Xp0 0.8192
Ugo/p+1 2.6207./3.5
Also A= hailid Al = _— = 2.326
Xgo 2.1074
Let A= 2.33

One may now set out parameter values in Table 22 for this case, retaining the
EP values for the globe valve (Table 18), and the (), p+l) values for the

motor operated valves (Table 20, Case V).
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TABLE

22. CALCULATIONS FOR CASE VII-B

Cutset| Valve Valve
No. No. Type EP 108 EP m o p+l
1(a) 25.2.4 | globe 5.8786x107* 0.58786 -0.5312(0.8448
(b) motor 0.3072
operated 2.867 1.963] 2.562
2(a) 25.1.2 globe 2.4354x107* 0.24354 -1.412610.8448
25.3.4
(b) 108 motor 0.3072
operated 2.867 1.963| 2.562
3(a) 56.3.6 | ball 0.8192x107% 0.8192x107? 23.3 3.5
2.1074x10™* | 2.1074x107!
(b) 108 motor 0.3072
operated 2.867 1.963| 2.562
4(a) 51 motor 0.3072
operated 2.867 1.963| 2.562
(b) 108 motor 0.3072
operated 2.867 1.963| 2.562
5(a) 45 motor 0.3072
operated 2.867 1.963| 2.562
(b) 108 motor 0.3072
operated 2.867 1.963; 2.562
6(a) 25.4 globe 5.8786x1073 5.8786 1.7713(0.8448
(b) 108 motor 0.3072
operated 2.867 1.963) 2.562
(c) 25.2 globe 5.8786x1073 5.8786x107% |-5.1364{0.8448
7(a) | 25.4 globe 5.8786x107% | 5.8786x107% |-5.1364|0.8448
(b) 108 motor 0.3072
operated 2.867 1.963| 2.562
(c¢) | 56.3 ball 0.8192x107® | 0.8192
2.1074x1073 2.1074 2.33 3.5

Table 23 gives the (u, o) and (), p+l) values for the cutsets, using the

reproductive theorem in cutset 6.

numerically to cutset 7.
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TABLE 23. PARAMETER VALUES FOR CASE VII-B

Number 7 o A p+l
P; -A -0.5312 0.8448
-B 1.963 2.562
Py -A -1.4126 0.8448
-B 1.963 2.562
PIII 'A 23.3 3.5
-B 1.963 2.562
Py -A 1.963 2.562
-B 1.963 2.562
Py -A 1.963 2.562
-B 1.963 2.562
Py; -A -3.3651 1.1947
-B 1.963 2.562
Py -A -5.1364 0.8448
-B 1.963 2.562
-C 2.33 3.5

Terms VIII through XIV have the same parameter values as Term VII.

i=VI i=X1V
P=10"% x > P,.a X Py 5 + > P,y X P, X Py¢
i=1 i=VII

Figures 12 and 13 give the probability density and the CDF for Case VII-B.
Abscissa values are multiplied by 107® to obtain values for P. See Appendix 1
for the methodology of the calculation. Table 24 gives a comparison of

selected P values for Case VII-B with Case V.
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Figure 12. Density function in arbitrary units for Case VII-B.
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Figure 13. Cumulative distribution function for Case VII-B. The factor 107 is introduced to
convert abscissa values to probabilities. The calculated mean is 40.65 x 108, The calculated
quantiles: .01, .05, .1, 5, .9, .95, .99 are (31.02, 33.60, 35.05, 40.48, 46.5, 48.33, 51.98) x 10®
respectively.

Density and CDF for probability of failure of brake system
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TABLE 24. COMPARISON OF CASES V, VII-B

Motor operated valves Ball Valves Px10°© Px10°
Case Point estimates Distribution mean 95 perc
(Table 15)
v (5 perc) 1.5x1077 lognormal 25.6 31.9
(95 perc) 14x1077
VII-B (5 perc)l.5x1077 two parameter 40.7 48.3
(95 perc) 14x1077 gamma

The change in distribution for the ball values, going from lognormal to a two
parameter gamma distribution, produced a factor of increase in P values of the
mean of approximately 1.6. Figure 14 shows the graphs for Cases V and VII-B
for the cumulative distribution functions for probability of failure of the

brake system.

CALCUIATIONS FOR CASE I1X-B

Case IX-B is the same as Case VII-B with but a single change. Use is made of
an exponential rather than a two parameter gamma distribution. The frequency

curve for the two parameter gamma distribution is given by equation (7):

f(x) = —mMmM— (7

The exponential distribution is a special case in which p=0. Equation (7)

becomes:
£(x) = de™* (11)
Also the mean value, x, is given by:

— 1
X = — (12)
A
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(13)

NIIH

Conversely A=

Thus the exponential distribution has but a single parameter, A, which is
simply related to the mean value. In Case VII-B the two parameters chosen
were the values of the 20% lower interval, and the 80% upper interval from
Table 21. 1In Case IX-B the single parameter chosen is the point estimate for
the mean value = 0.647x10°%(1/hr); Table 21. Using an annual work load of
2,048 hours:

(EP) = 0.647x107®x2,048

= 1.325x107°

Introduce a factor of 10° to obtain the "xX" value.
103%(EP) = x = 1.325

From equation (13) for X:

1
= —— = 0.7547
1.325

Table 25 gives the parameter values for this case. The only changes from
Table 23 are the (X, p) values for the ball valves, which occur in terms
III-A, and VII-C. See Tables 22 and 23.

Figures 15 and 16 give the probability density and the CDF for Case IX-B.

Table 26 gives a comparison between Cases V, VII-B and IX-B. See Appendix 1
for the methodology of the calculation.
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TABLE 25. PARAMETER VALUES FOR CASE IX-B

Number 7 o A p+l
P; -A -0.5312 0.8448

-B 1.963 2.562
Py; -A -1.4126 0.8448

-B 1.963 2.562

-B 1.963 2.562
PIV 'A 1.963 2.562

-B 1.963 2.562
Py -A 1.963 2.562

-B 1.963 2.562
Py; -A -3.3652 1.1947

-B 1.963 2.562
PVII 'A '5.1365 0.8448

-B 1.963 2.562

-G 0.7547 1.0

Terms VIII through XIV are numerically the same as Term VII (A, B, C).

i=VI i=XIV
P =107° > Pia X Py g + > P,, X Py g X Py ¢
i=1I 1=VII
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Figure 15. Density function in arbitrary units for Case I1X-B.
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Figure 16. Cumulative distribution function for Case IX-B. The factor 107 is introduced to
convert abscissa values to probabilities. The calculated mean is 42.80 x 10°. The
calculated quantiles: .01, .05, .1, .5, 0.9, .95, .99 are (30.60, 33.78, 35.55, 42.48, 50.45,
52.95, 57.9) x 10 respectively.

Density and CDF for probability of failure of brake system
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TABLE 26. COMPARISON OF CASES V, VII-B, IX-B
Case Motor Operated Valves: Ball Valves: Table 21 Px10° Px108
Percentile Values Distribution, Mean or
(Table 14) Percentile Values Mean 95 perc.
\' (5 perc) 1.5x1077 lognormal 25.6 31.9
(95 perc) 14x1077 (mean) 0.647x107®
VII-B (5 perc) 1.5x1077 two parameter gamma 40.7 48.3
(20 perc) 0.400x1078
(95 perc) 14x1077 (80 perc) 1.029x107
IX-B (5 perc) 1.5x1077 one parameter exponential{ 42.8 52.9
(95 perc) 14x1077 (mean) 0.647x107°

Table 26 shows that the P values for Cases VII-B and IX-B are within 5% (mean)

to 10% (95 perc) of each other.

CALCUIATIONS FOR CASE VII-A

This case is similar to Case VII-B except that it is based on Series A data,

Table 21.

The calculations follow the same format used for Case VII-B.

A two

parameter gamma distribution is used based on the 20% and 80% interval data.

Q20

7.820%x107%(1/hr)

Qgo = 12.456x107%(1/hr)

EP,, = Quox2,048 (hrs) = 1.6015x1072

EPg, = Qgox2,048 (hrs) = 2.5510x1072

Use 10° as a multiplier to obtain

Xzo = 103(EP)20 =

Xgo = LO0%(EP)g,

25.510
The ratio, R= — = 1,593
16.015

X values.

16.015

25.510
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From Pearson’s Tables: p = 12.4; p+l = 13.4

Also uyy = 2.8035; ugy = 4.4659

uw/p+l 2.8035
A= - RN
x 16.015
A = 0.6408

One may now set out Table 27, similar to Table 23 except for the (X, p+l)

values for Case VII-A, which appear in terms P;;;., and Py;;¢ for ball valves.

TABLE 27. PARAMETER VALUES FOR CASE VII-A

Number b o A p+l
P; -A -0.5312 0.8448
-B 1.963 2.562
P;; -A -1.4126 0.8448
-B 1.963 2.562
-B 1.963 2.562
-B 1.963 2.562
Py, -A 1.963 2.562
-B 1.963 2.562
Py, -A -3.3651 1.1947
-B 1.963 2.562
-B 1.963 2.562
-C 0.6408 13.4

Terms VIII through XIV are identical numerically to VII (A, B, C).

i=VI i=X1V
P =10"° > P,.a X Pyp + ) P,.o X P,y X Py ¢
i=I i=VII
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Figures 17 and 18 give the probability density and the CDF for Case VII-A.
See Appendix 1 for the methodology of calculation. Table 28 compares selected
P values for Cases VII-B and VII-A.

TABLE 28. COMPARISON OF CASES VII-B, VII-A

Ball Valves: Table 21 Px10° Px108
Case Distribution

Percentile Values Mean 95 perc.
VII-B two parameter gamma

(20 perc) 0.400x107® 40.7 48.3

(80 perc) 1.029x107®
VII-A two parameter gamma

(20 perc) 7.820x107° 199 227

(80 perc) 12.456x1078

Note that although the 20 percentile and 80 percentile failure rates increase
by factors of 12 to 20, the P values increase only by a factor of 5. This is
in contrast to the situation for the motor operated valves, for which the P
values had a power dependence on the input failure rates. The less sensitive
dependence, in the case of the ball valves, is a result of fewer terms in
which ball valve failure rates appear. See Table 22, The first term in which

the ball valve failure rate appears is 3(a), followed by 7(c), 8(c), etc.

CALCUIATIONS FOR CASE IX-A

Case IX-A is similar to Case IX-B in that a single parameter exponential
distribution is used, based however on Series A data, Table 21. The format

used in Case IX-B is followed. The mean failure rate is:

Qa = 9.861x107%(1/hr)
(EP), = Q,x2,048 hrs. = 9.861x1075x2,048
(EP), = 20.195x1073

x = 10%(EP), = 20.195
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Figure 17. Density function in arbitrary units for Case VII-A.
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Figure 18. Cumulative distribution function for Case VIi-A. The factor 10 is introduced to
convert abscissa values to probabilities. The calculated mean is199.1 x 106, The
calculated quantiles: .01, .05, .1, .5, 0.9, .95, .99 are (162.5, 172.6, 178.1, 198.6,

220.7, 227.3, 240.0) x 107 respectively.

Density and CDF for probability of failure of brake system
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1

1

A= — = — = 0.04952

X

p=20

Table 29 sets out the parameter values which are similar to Table 27, except

for the (), p+l) values for the ball valve, series A data, terms III-A, VII-C.

TABLE 29. PARAMETER VALUES FOR CASE IX - A
Number 7 o by p+l
P; -A -0.5312 0.8448
-B 1.963 2.562
P;; -A -1.4126 0.8448
-B 1.963 2.562
PIII 'A 0.4952 1.0
-B 1.963 2.562
PIV 'A 1.963 2.562
-B 1.963 2.562
Py, -A 1.963 2.562
-B 1.963 2.562
Py -A -3.3651 1.1947
-B 1.963 2.562
-B 1.963 2.562
-C 0.04952 1.0

Terms Pyyy; through Pypy are identical numerically to Pyrp (a,3.c)-

P = 10

Figures 19 and 20 give the probability density and the CDF for Case IX-A.
Appendix 1 for the methodology of calculation.

i=VI

é PiaXPipg + é Pia X Pipg X Pig

i=1

i=XIV

i=VII

values for Cases IX-B, IX-A and VII-A.
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Figure 19. Density function in arbitrary units for Case IX-A.
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Figure 20. Cumulative distribution function for Case IX-A. The factor 107 is introduced to
convert abscissa values to probabilities. The calculated mean is 214.7 x 106. The
calculated quantiles: .01, .05, .1, .5, 0.9, .95, .99 are (106.3, 130.0, 144.5, 208.2,

293.1, 321.4, 379.7) x 106 respectively.

Density and CDF for probability of failure of brake system
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TABLE 30. COMPARISON OF CASES IX-B, IX-A, VII-A

Ball Valves: Table 21 Px10°® Px10°
Case Distribution, Mean
Failure Rate Mean 95 perc
IX -B one parameter exponential 42.8 52.9
0.647x107®
IX -A one parameter exponential 215 321
9.861x10°®
VII -A two parameter gamma
(20 perc) 7.820x107® 199 227
(80 perc) 12.456x107°

The increases in P for Case IX-A, compared to Case IX-B are by factors of 5
and 6, approximately, whereas the increase in the mean failure rate was by a
factor of 15. This is similar to what occurred in Cases VII-A and VII-B.
Comparing Case VII-A with Case IX-A, changing from a two parameter gamma
distribution to an exponential distribution, increases the P by 8% (mean) and
41% (95 percentile). Figure 21 compares cases IX-B, IX-A, and VII-A
graphically for the cumulative distribution functions for probability of

failure of the brake system.

X. CALCULATIONS OF BOUNDING CASES

The calculations in Chapter IX complete the utilization of the basic data
provided by the sources listed in Table 8. It is now appropriate to consider
the possibilities of calculating reasonable bounding cases, given the nature
of the data available. One may consider the situation for the motor driven

valves, and separately for the manual ball valves.
The discussion of the sources of the data (LERs) in NUREG/CR-1363 and

NUREG/CR-2770 (see Chapter VII and Table 8) suggests that a lower bound set

of values for the motor driven wvalves be chosen that were used in the
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calculations for Case I-gamma (see Tables 15, 16, 17), the "overall" data in
Table 13 with mean failure rate of 3.2x107%, Similarly an upper bound set of
values for the motor driven valves were chosen and used in Case V (see Table

14 with mean failure of 4.8x1077, also Table 20).

The situation for the manual ball valves differs from that of the motor driven
valves. As Table 21 indicates, there are two distinct data series, A and B,
with point estimates differing by more than an order of magnitude (~15). This
suggests there may not exist just one simple generic type of manual ball
valve. Without additional information about the manual ball valves actually
in place in the waste hoist, prudence suggests making the assumption that
series A manual ball valves are in place. Thus it is proposed to use the "A"
data for the manual ball valve in both the lower and upper bound calculations.
Actually, the calculations already performed in Case IX-A have utilized "A"
data for the manual ball valves (exponential distribution), and Case V data
for the motor driven valves. Thus Case IX-A will serve as the "upper bound"

case.

For the lower bound case the data suggested above for the motor driven valve
taken from Case I-gamma will be combined with the "A" data for the manual ball
valve (with exponential distribution). This case is named "Case IX-A:I-
gamma." Table 31 lists the calculations for this case. Note that the EP
values for the globe valves are the same that appear in Table 15. The EP
values for the motor operated valves are the same as those in Table 15 for the
Case I-gamma. The X, p+l values for the motor operated valves are also the
same in both Tables 15 and 31.

Table 32 sets out the parameter values for the calculation of Case IX-A:I-
gamma. Figures 22 and 23 give the probability density and the CDF for Case
IX-A:I-gamma. Figure 24 shows the graphs of the cumulative distribution
functions for probability of failure of the brake system. These graphs
represent the lower bound, Case IX-A:I-gamma, and the upper bound, represented
by Case IX-A, already depicted in Figure 21. Table 33 summarizes the

parameters used in the various cases that were calculated.
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TABLE 31. CALCULATIONS FOR CASE IX-A:I-GAMMA
Cutset| Valve Valve IOE_EP
No. No. Type EP (x) I o A pt+l
1(a) 25.2.4 |globe; 5.8786x107* 15.8786 1.7713]0.8448
(b) 108 motor 0.6554x10™* [0.6554
operated |[1.5073x107% [1.5073 .3567 | 2.2
2(a) 25.1.2 |globe; 2.4354x107% |2.4354 0.8901/0.8448
25.3.4
(b) 108 motor 0.6554
operated 1.5073 .3567 2.2
3(a) 56.3.6 |ball; 20.195x107™* |[20.195 .049521 1.0
(b) 108 motor 0.6554
operated 1.5073 .3567 2.2
4(a) 51 motor 0.6554
operated; 1.5073 .3567 2.2
(b) 108 motor 0.6554
operated 1.5073 .3567 2.2
5(a) 45 motor 0.6554
operated; 1.5073 .3567 2.2
(b) 108 motor 0.6554
operated 1.5073 .3567 2.2
6(a) 25.4 globe; 5.8786x107% |[5.8786 1.7713]0.8448
(b) 108 motor 0.6554
operated; 1.5073 .3567 2.2
(c) 25.2 globe 5.8786x107% |5.8786x1072 |-2.8339|0.8448
7(a) | 25.4 globe; 5.8786x107% |5.8786x1072 |-2.8339(0.8448
(b) 108 motor 0.6554
operated; 1.5073 .3567 2.2
(c) 56.3 ball 20.195x10™® [20.195 .04952{ 1.0
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TABLE 32. PARAMETER VALUES FOR CASE IX-A:I-GAMMA

Term Lognormal Distribution Gamma Distribution
Number
7 o b =2 K = p+l
P; -A 1.7713 0.8448
-B 3.3567 2.2
P;; -A 0.8901 0.8448
-B 3.3567 2.2
-B 3.3567 2.2
Py -A 3.3567 2.2
-B 3.3567 2.2
Py -A 3.3567 2.2
-B 3.3567 2.2
Py; -A -1.0626 1.1947
-B 3.3567 2.2
Pyrr -A -2.8339 0.8448
- 3.3567 2.2
-C 0.04952 1.0

Terms Pyrr; through Pyry are identical numerically to Pyrrap,c)-

2~
]

1078

i=VI i=X1IV

X g Pioa X Pip + é Pia X Pip X Pyg

i=I i=V1I
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TABLE 33. SUMMARY OF PARAMETER VALUES AND DISTRIBUTIONS FOR SELECTED CASES

Manual Ball Valves

Motor Operated Valves

Distribution, Distribution,
Case Failure Rate, 1l/hr Failure Rate, 1l/hr
I (Design lognormal lognormal
Option B-2) med: 0.65x1078 med: 6.0x107°8
I-R lognormal lognormal
med: 0.65x107° med: 3.2x107°
I-gamma lognormal 2 parameter gamma
med: 0.65x107° mean: 3.2x107°
\Y lognormal 2 parameter gamma
med: 0.65x107® 5 percentile: 1.5x107’
95 percentile: 1.4x107®
V-R lognormal 2 parameter gamma
med: 0.65x107® mean: 4.8x1077
95 percentile: 1.4x107°
VII-A 2 parameter gamma 2 parameter gamma
20 percentile: 7.82x107° 5 percentile: 1.5x107’
80 percentile: 12.46x1078 95 percentile: 1.4x107®
VII-B 2 parameter gamma 2 parameter gamma
20 percentile: 0.40x107 5 percentile: 1.5x107’
80 percentile: 1.029x1078 95 percentile: 1.4x107°
IX-A exponential 2 parameter gamma
mean: 9.861x107° 5 percentile: 1.5x107’
95 percentile: 1.4x107®
IX-B exponential 2 parameter gamma

mean: 0.647x1078

5 percentile: 1.5x107’
95 percentile: 1.4x107®

IX-A:1-gamma

exponential
mean: 9.861x1078

2 parameter gamma
mean: 3.2x107%
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Figure 22. Density function in arbitrary units for Case IX-A: {-gamma.
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Figure 23. Cumulative distribution function for Case IX-A: I-gamma. The factor 1078 is introduced to
convert abscissa values to probabilities. The calculated mean is 229.6 x 108, The calculated
quantiles: .01, .05, .1, 5, 0.9, .95, .99 are (113.1, 139.0, 154.9, 223.1, 312.8, 342.4, 403.3) x 108
respectively.
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Figure 24. Cumulative distribution function for probability of failure of brake system.
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XI. DISCUSSION

The analysis in this report is based on failure data for the various types of
valves used in the waste hoist. The data sources are listed in Table 8, and
include the references used by DOE in their IRA DOE/WIPP-89-010, 1990 and the
follow up references cited in this report. It may be noted that the data for
the motor driven valves, a crucial type in this study, are based on Licensee
Event Reports (LERs) extending only through 1980, some 13 years ago at the
time of this writing. A second important type of valve, the manual ball
valves, has two distinct sets of failure data which differ by more than an
order of magnitude. This information was published in 1985 in the
Nonelectronic Parts Reliability Data (NPRD-3). A question to be considered,
raised earlier in this report, is whether there exists more than one generic

type of manual ball valve,

A discussion of the nature of the data for the motor driven values which
appear in NUREG/CR-2770 (see Table 8) emphasizes imperfections in the data
which are obtained from Licensee Event Reports. One consequence is the
considerable range of possible failure rates listed in Table 14, derived from
NUREG/CR-1363 and NUREG/CR-2770. Both reports are based on the same basic
data sets, the LERs. For this reason, this report chose to calculate a lower
and upper bound, using the values for the failure rates listed in Table 1l4.

An additional choice that is required is the selection of a failure rate for
the manual ball valves, listed in Table 21. There are two distinct sets of
data, the A series and the B series. Without additional information, prudence
dictates selection of the higher failure rate, the A series, to be used in the

bounding calculations.

The fajlure data were then utilized in the calculation of the probability
density and cumulative distribution function for a random variable, the
probability of failure of the brake system. The methodology for these

calculations is described in the appendices of this report.

The bounding cases described above are given in Figure 24, (lower bound,
Case IX-A:I-gamma and upper bound, Case IX-A). For the lower bound, the
probability of failure varies from approximately 10™® (1 percentile) to

77



4x107% (99 percentile) per year. For the upper bound, the probability of
failure varies from approximately 107 (1 percentile) to 4x107* (99 percentile)

per year, a full two orders of magnitude greater than the lower bound.

Clearly there is a need to lower this large range between the bounding
calculations. This is possible only with the acquisition of more data to
reduce or eliminate the ambiguities and questions discussed in this report.

In Chapter III of this report on "Use of Confidence Intervals vs. Point
Estimates Alone" the quotation from the NRC in the Federal Register emphasized
the importance of performing sensitivity studies "to determine those
uncertainties most important to the probabilistic estimates." The analyses in
this report make it clear that the failure rates for the motor driven valves
are the most important in determining the probabilistic estimates. More
information in this area may help narrow the difference in the bounding

calculations.

Finally one may note that the use of point estimates alone may produce values

of probability of failure that are not conservative.
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APPENDIX 1
SUMMARY OF METHODS USED IN CALCULATIONS

Our building blocks are numerical methods to compute probability distributions
of two types of random variables. The first is a random variable that is the
sum of two independent random variables. The second is a random variable that
is the product of two independent random variables. To compute the
distribution of a sum of two independent random variables, we use Fast Fourier
Transforms to implement the calculus of characteristics functions.! To
compute the distribution of a product of two independent random variables, we

exploit the additional fact that the log of a product is the sum of the logs.

Transform Methods

The heart of the calculation is a method for computing the density function
for a random variable that is the sum of two independently distributed random

2

variables with known densities.“ To compute the distribution of any such sum,

we use the following theorems.

Theorem: Let x be a continuously distributed random variable with density
f(x), and let y be a continuously distributed random variable with density
g(y). Let x and y be independently distributed. Then the random variable

z = X + y is distributed with density h(z) given by the convolution of f and

g, which is defined by

h(z) = [ f(w)g(z - u)du

There is a discrete-random variable version of this theorem, which governs
discrete approximations to continuously distributed random variables. Here it

Py

1s.

! That is, we use transform methods to implement the property that the
density of the sum of two independent random variables is the convolution of
their densities.

2 The mathematical theorems we are quoting can be found in many books on
operational mathematics. For example, see R. A. Gabel and R. A. Roberts,
Signals and Linear Systems, Wiley, 1973.
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Theorem: Let x be a discretely distributed random variable that takes values
on the set X = [%Xq,Xy,...,Xp-1], with density given by f, = Prob[x = x,]. Let
y be a discretely distributed random variable that takes values on the same
set X, with density given by g, = Prob[y = x,]. Let z be the discretely
distributed random variable z = X + y, and let x and y be distributed

independently. Then z has density h determined by®

hy = Z frge-x

k

where h, = Prob[z = z,], and where z resides in the discrete set Z =

[2%g, .. .,2%54].

The next useful result is the fact that the Fourier transform of a convolution
is the product of the Fourier transforms of the two sequences being
convoluted. The Fourier transform of a sequence (x,)i=5 'is defined as the

sequence of complex numbers x(w;) given by

T-1
(1) x(w;) = the'iwjt
t=
where w; = 27j/T and j = 0,1,...,T-1. The inverse Fourier transform is given
by
T-1
(2) x, = T1 Z x(wy)etVit
j=0

Equations (1) and (2) constitute the basic Fourier transform pair. Notice
that the inverse Fourier transform of the Fourier transform is the original

sequence.

3 For Sensitivity Case I, we directly computed the convolution. For all
other cases, we used the Fast Fourier Transform methods.
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Now here is the key theorem we use:

Theorem: The Fourier transform of the convolution of two sequences (x;} and

{y.} is the product of their Fourier transforms x(wd), y(wd).

We apply this theorem as follows. For each of two continuous distributions,
(f,g), the probability laws for (x,y), respectively, we put down a discrete
'grid’' of points X = [xy,...,Xr-;] on the real line, with the points spaced
close enough together and over a sufficiently large set to approximate each
continuous distribution well. Then we used (f,g) to generate approximating
discrete probability distribution for (x,y). For computational consistency,
we used the same grid for each random variable under study. We chose the grid
carefully to make sure that each random variable as well as the relevant sums
were well approximated by the procedure. For each approximating distribution
%t and g,, we computed the Fourier transform f(w;) and g(w;). Then we computed
the Fourier transform of {ﬂt}, the approximating distribution of the sum of

X +y, as

h(w;) = £(w;)g(w;)

Notice how this uses the preceding theorem. To compute the approximate

density of x + y, hy, we then inverse Fourier transformed h(w;):

T-1

h, = T Z h(w;)el¥st

t=0
Computational Details

We implemented these calculations using the Fast Fourier Transform (FFT) and
the associated inverse transform, the IFFT. We used the computer language
MATLAB on a SUN Sparc-2 Workstation. This permitted us to put down very large
and fine grids. We used one (inconsequential) approximation: each time a
convolution is computed, the FFT in effect truncates the grid on which the

relevant sum is distributed, and restricts it to the same domain on which the
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original two distributions are defined.® In particular, the density of the
sum is computed only on the same domain X = [Xy,%y,...,Xry], rather than on
the true domain Z = [2x,,...,2%X;3]. To control the error resulting from this
approximation, we select the grid set X very carefully to make sure that it
covers the region where the pertinent x,y, and sum z = X + y have appreciable

positive probability.
Distribution of a Product

To compute the distribution of the product of two independent random
variables, we use the fact that any functions of independent random variables
are also independent random variables. Let X be a random variable with
density f(X). Let Y = g(X) be a monotone transformation of X. Define dY/dX =
g'(x) # 0, by monotonicity. Define the inverse function X = é”(Y), where

dg }(Y)/dY = dX/dY = 1/g'(X). Then Y has the density’®

(3) £,(Y) = £(X) |dX/dY|

Our first step is to apply (3) where g is the natural log function. In this

case, we get
(4) £,(Y) = £(X)X

To calculate the density of x;; * X,;, we compute the densities of the log of
X;; and the log of x,;, then calculate the Fast Fourier transform of these
densities, multiply the Fourier transforms, then inverse Fourier transform to

get the density of the product of the logs.

4 This is the cost of using the FFT. The cost is more than compensated
for in terms of the size of the grids that we can handle swiftly. We
experimented with calculating convolutions directly, and actually used this
method for Case I. That is, we convoluted the sequences f,g to get h using h;
= )ufxgt-x- This proved to be very time-intensive. We achieved accurate
results much more quickly using the transform methods. Also, please note that
the results that we are reporting are vastly more accurate than would be
calculations using Monte Carlo methods, controlling for computer time.

5 For example, see Bernard Lindren, Statistical Theory, Third Edition,
MacMillan Publishers, 1976; p. 454.
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For the final step, we apply (3) once more, this time using the exponential
function as the g function, to calculate the density of the exponential of the
log of x;; X Xp;, which of course is simply the density of x;; X x,;. The

appropriate version of (3) for the exponential function g is simply
(3 az(Z) = h,(log(Z))/Z

where h, is the density of the sum of the logs, and a is what we want, namely,

the density of the product x,;x,;.
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APPENDIX 2
COMPUTER PROGRAMS

The computer programs used to calculate the probability distributions are
available from Professor Thomas Sargent. They can be obtained through
electronic mail by sending a request to sargent@riffle.stanford.edu.

Alternatively write to Professor Thomas Sargent, Hoover Institution, Stanford,
California 94305.
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