
Fact Sheet Concerning Sources of Groundwater Contamination at the Technical Area Five (TA-V), the Tijeras Arroyo Groundwater (TAG) and the Burn Site Areas of Concern at Sandia National Laboratories

By
Paul Robinson
sricpaul@earthlink.net
Research Director
Southwest Research and Information Center
PO Box 4524
Albuquerque, NM 87196
www.sric.org

June 10, 2016 Revision

This Fact Sheet summarizes a report on the potential sources of groundwater contamination at three sites at Sandia National Laboratories ("SNL") in New Mexico south of the City of Albuquerque in Bernalillo County: Technical Area Five ("TA-V"), The Tijeras Arroyo Groundwater ("TAG") site and the Burn Site Groundwater Areas of Concern.

Long-Term Stewardship Areas of Concern at Sandia National Laboratories showing Location of Tijeras Arroyo Groundwater (TAG) and Technical Area 5 (TA-V) Groundwater Remediation Sites

Overview

Sandia National Laboratories is located with the boundaries of Kirtland Air Force Base ("KAFB"). SNL and KAFB are located in a portion of Bernalillo County that has not been incorporated into the city limits of the City of Albuquerque. The City of Albuquerque borders SNL and KAFB on the north and west.

Water supply wells for the City and surrounding County are operated by the Albuquerque Bernalillo County Water Utility Authority ("ABCWUA") are found within a quarter mile of the northern boundary of SNL. These water supply wells, and water supply wells used by SNL and KAFB, draw water from the regional aquifer beneath the Middle Rio Grande Valley where the City of Albuquerque, SNL and KAFB are located.

The TA-V and TAG site are located in the watershed of Tijeras Arroyo and overlie the Middle Rio Grande Regional Aquifer. Tijeras Arroyo slopes east-to-west as it crosses SNL and KAFB between the

Sandia Mountains to the east and the South Valley and Rio Grande to the west. Between the TA-V and TAG sites, Tijeras Arroyo is joined by its largest tributary, Arroyo del Coyote just west of the golf course on Kirtland Base, Tijeras Arroyo Golf Course. The Burn Site is located down gradient of springs at the headwaters of the Arroyo del Coyote watershed.

The water table in the Rio Grande regional aquifer located beneath the TA-V and TAG sites has been affected by withdrawals from the aquifer for drinking water uses in the City of Albuquerque and on KAFB. The regional aquifer water table had dropped by 80 - 100 feet during the 1960 - 2002 period. The continuing withdrawals of groundwater for drinking water use continue to influence the regional and perched aquifer water tables at TA-V and TAG.

Information in on the sites in this Fact Sheet is compiled from SNL Annual Groundwater Monitoring Reports 2009 – present, and other sources listed. The SNL Annual Groundwater Monitoring Reports from 2006 to the present are available at

http://www.sandia.gov/news/publications/environmental reports/.

Summary of Groundwater Contamination at TAG and TA-V Environmental Restoration Sites

Characteristic	Tijeras Arroyo Groundwater	Technical Area V (TA-V) Site
	(TAG) Site	, ,
Nitrate groundwater	Up to 30 ppm	Up to 25 ppm
contamination		
(EPA MCL = 10 mg/L)		
TCE groundwater	Up to 10 ppb	Up to 25 ppb
contamination		
(EPA MCL=5 μg/L=5 ppb)		
PCE groundwater	None detected	Up to 8 ppb
contamination		
(EPA MCL=5 μg/L=5 ppb)		
Other groundwater	Chlorinated volatile organic	cis-1,2-DCE
contaminants	compounds	4.5 μg/L; well below EPA MCL
	(less than 5 ppb)	of 70 μg/L
Probable source of	Solid-waste management units	Liquid-waste disposal system
contamination	_	
Depth to groundwater	450-475 (regional aquifer)	+/- 500
(ft. below ground surface)	250-375 (perched aquifer)	

At TA-V, Tricholoroethene (TCE), Tetrachloroethene (PCE) and Nitrate exceeding allowable maximum contaminant levels (MCLs) have been identified in monitoring wells sampling groundwater beneath the site since 1993 in the deep alluvial aquifer that supplies drinking water to the Albuquerque area. Sources of the TA-V contamination identified by SNL include liquid waste disposal systems that discharged at least 50 million gallons of wastewater between the early 1960s and 1992.

At TAG, TCE contamination in the regional aquifer was first identified by SNL in 1994. TCE exceeding the applicable Maximum Contaminant Level ("MCL") has been detected in two wells sampling a perched ground water system connected to the regional aquifer; including exceedences of the applicable MCLs for TCE in all samples from one of the wells. Nitrate exceeding the applicable MCL has been detected in four of the TAG monitoring wells, reaching 3 times the MCL in August 2009 samples.

Summary of Health Effects and their Maximum Contaminant Levels (MCL) in Drinking Water Established by the US Environmental Protection Agency for SNL Contaminants

Contaminant	Maximum Contaminant Level Goal (MCLG) 1 - mg/l (parts per million)	Maximum Contaminant Level (MCL) ¹ - mg/l (parts per million)	Health Effects from Long- term Exposure to Contaminants above MCL (unless specified as short- term)	Sources of Contaminant in Drinking Water
Tricholorethylene (TCE)	zero	0.005	Liver problems; increased risk of cancer	Discharges from metal degreasing site and other factories
Tetrachloroethylene (PCE)	zero	0.005	Liver problems; increased risk of cancer	Discharges from factories and dry cleaners
Nitrate	10	10	Infants below age of six months who drink water containing nitrate in excess of MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-bay syndrome.	Runoff from fertilizer use; leaking from septic tanks, sewage; erosion of natural features

What are the Potential Sources of Contamination at TA-V?

Three waste disposal sites previously operated by SNL have been identified by as potential sources of contamination detected at TA-V.

Wastewater Disposal History at Potential Sources of Contaminants at TA-V

Disposal Site	Period of	Estimated Volume of Release –	SWMU
	Operation	gallons	Number
TA-V Seepage Pits	1960s - 1992	30 – 50 million	275
Liquid Waste Disposal	1962 - 1967	6.5 million	5
System (LWDS) Drain Field			
Liquid Waste Disposal	1967 - 1972	12 million	4
System Surface			
Impoundments			

What are the Potential Sources of Contamination at TAG?

Three waste disposal sites previously operated by SNL have been identified as "high Concern" potential sources of contamination detected at TAG.

Wastewater Disposal History at SNL Locations of "High Concern" as Potential Sources of Release at TAG

Source: SNL AGMR 2010 and SNL, "Tijeras Arroyo Groundwater Investigation Report", 2005 available at https://hwbdocuments.env.nm.gov/Sandia%20National%20Labs/2005-11-1%20Tijeras%20Arroyo%20GW%20IR.pdf

INVESTIGATION REPORT

Source	Contaminant of	Period of	Estimated Volume of	SWMU Number
	Concern	Operation	Release in gallons	
TA-I Old Acid	TCE, Nitrate	1948-1974	1.3 billion	46 (connected
Waste Line				to SWMU 226)
Outfall				
TA-II Bldg. 901	TCE, Nitrate	1948 - 1992	No estimate identified	165
Septic System				
TA-I Sanitary	Nitrate	1948 - Present (as	No estimate identified	187
Sewer System		of 2005)		

Ten KAFB waste disposal sites have been identified as potential sources of the contamination detected at TAG.

KAFB Sites of Potential Sources of TCE and Nitrate at TAG

Potential Source	Contaminant of	Dates of	Estimate Volume of release (gallons),
	Concern and Level of	Operations	acreage and/or volume of debris
	Concern (L=Low;		
	M=Medium; H=High)		
KAFB Landfill LF-	TCE (L), Nitrate (M)	1945 - 1967	Storm water (no estimate available);
02			50 acres of unlined landfill; estimated
			1,000,000 cubic yards of waste
KAFB Landfill LF-	TCE (L), Nitrate (M)	1960 -1989	Storm water (no estimate provided);
08			30 acres of unlined landfill; estimated
			600,000 cubic yards of waste
KAFB Landfill LF-	(TCE (None); Nitrate	1979 - 1988	Storm water (no estimate provided); 2 acres
44	(M)		of unlined landfill; no debris volume
	, ,		estimate
KAFB Landfill LF-	TCE (None); Nitrate	1989 -	Storm water (no estimated provided);
268	(M)	Present (as	45 acres of landfill;
		of 2005)	no liner identified;
			no debris volume estimate
KAFB Sewage	TCE (H); Nitrate (H)	1966 - 1987	Most of 7.3 billion gallons discharged at
Lagoons			lagoons; unidentified volume of wastewater
			piped to golf course pond
KAFB Golf Course	TCE (H); Nitrate (H)	1966 - 1987	Unknown volume of wastewater piped from
Main Pond			KAFB sewage lagoons; After 1988, pond
			used to store well water
KAFB Sanitary	TCE (L); Nitrate (M)	1940s -	No estimate of volume released
Sewer Lines		Present (as	
		of 2005)	
KAFB Septic Tank	TCE (L); Nitrate (M)	1940s -	Estimated 30 systems across KAFB; No
Systems		Present (as	estimate of volume released

		of 2005)	
KAFB Manzano	TCE (None); Nitrate	1940s -	Dynamite blasting of bunkers may have left
Base Blasting	(Medium)	Present (as	explosive material that degrades to nitrate
		of 2005)	

Five City of Albuquerque waste disposal sites have been identified as potential sources of contamination at TAG.

City of Albuquerque (COA) Sites of Potential Sources of TCE and Nitrate at TAG

Potential Source	Contaminant of	Period of	Estimate Volume of release (gallons),
	Concern and Level of	Operations	acreage and/or volume of debris
	Concern (L=Low;		
	M=Medium; H=High)		
COA Eubank	TCE (H); Nitrate (H)	1974(?) -	27 acres of landfill area; No liner identified;
Landfill –		1989	estimated 1,000,000 cubic yards of
Northeast Area			municipal and industrial debris dumped;
			sewer lines associated with residential
			waste lagoons and septic tanks cross site.
COA Eubank	TCE (H); Nitrate (M)	Early 1960s	60 acres of landfill area; no liner identified;
Landfill –		- 1973(?)	no estimate of volume of municipal and
Southwest Area			industrial debris dumped
COA Sanitary-	TCE (L); Nitrate (H)	1994	100 million gallons spilled; unknown volume
Sewer			of septic water recovered from temporary
Rupture/Tempora			pond on floodplain
ry Sewage Pond			
COA Sanitary	TCE (L); Nitrate (H)	1940s -	Leaking sewer lines may be ongoing
Sewer Lines		Present (as	problem on KAFB
		of 2005)	
COA Montessa	TCE (None); Nitrate	1950s -	No volume estimate provided; Sewage
Park/Tree Farm	(H)	Present (as	lagoon use at Montessa Park Correctional
		of 2005)	Facility; Irrigation ponds and fertilizer used
			at US Forest Service Tree Farm

What are the Potential Sources of Contaminants at the Burn Site Ground Groundwater Area of Concern?

"Maximum and most recent concentrations of nitrate in groundwater from Burn Site wells. – 2008 – SNL AGMR 2009

Contaminant Historica Maximum Concentrati		Recent Maximum Concentration	Regulatory Limit (MCL)
Nitrate ^a	32.6 mg/L ^b	29.3 mg/L ^c	10 mg/L ^d

mg/L = milligrams per liter

- a. Nitrate or nitrate plus nitrite (NPN) both expressed as nitrogen.
- b. Detected in a sample from well CYN-MW6 collected in June 2006. Duplicate result was 29.5 mg/L.
- c. Detected in a sample from well CYN-MW6 collected in December 2007. Duplicate result was 27.7 mg/L.
- d. 40 CFR 141.62, "Maximum Contaminant Levels for Inorganic Contaminants (2003)."

"Nitrate in groundwater near the Burn Site is attributed to non-point sources derived either from nitrate disseminated from open detonation of HE [High Explosives] from 1967 until the early 1980s at sites within Solid Waste Management Unit (SWMU) 65 or from concentration of nitrate present in rainwater via evaporation or transpiration of water from alluvial deposits in Lurance Canyon.

"Evaluation of nitrate in sediments from nearby pristine alluvial deposits and springs that discharge from fractured metamorphic rocks will be useful in determining the source of nitrate in groundwater at the Burn Site and evaluating whether that source has been depleted. The trends of nitrate concentrations over time indicate that a pulse of nitrate has moved downgradient across the Burn Site since 1995." SNL AGMR 2009.