

COLLEGE OF PHARMACY METAL EXPOSURE AND TOXICITY ASSESSMENT ON TRIBAL LANDS IN THE SOUTHWEST

SOUTHWEST RESEARCH AND INFORMATION CENTER

National Institute of Environmental Health Sciences Your Environment, Your Health.

Overview of Community-partnered Research to Assess Health Effects of Environmental Exposures to Uranium in Tribal Communities

New Mexico Public Health Association Annual Meeting May 19-20, 2022

Chris Shuey, MPH, Community Engagement Core Lead Jose Cerrato, Ph.D., Mineralogy and Toxicity of Mine Wastes Eliane El Hayek, Soil and Plant Uptake in Agricultural Areas Near Mines Esther Erdei, Ph.D., DiNEH Project Methods and Findings Debra MacKenzie, Ph.D., Navajo Birth Cohort Study-ECHO+ Sarah Henio-Adeky, BA, Navajo Translation of Thinking Zinc Clinical Trial

Funding: NIH/NIEHS P42 ES025589 (UNM METALS)

This material was developed in part under cited research awards to the University of New Mexico. It has not been formally reviewed by the funding agencies. The views expressed are solely those of the speakers and do not necessarily reflect those of the agencies. The funders do not endorse any products or commercial services mentioned in this presentation.

Contributors, Funding, Disclosures, Disclaimer, Approvals

Contributors: David Begay, Jessica Begay, Peterson Bell, Sadie Bill, Adrian Brearley, Matt Campen, Jose Cerrato, Rose Dan, Erica Dashner-Titus, Thomas DePree, Eliane El Hayek, Esther Erdei, Sarah Henio-Adeky, Edith Hood, Laurie Hudson, LaTasha James, Teracita Keyanna, Larry J. King, Savannah LaRosa-LoPresti, Lynda Lasiloo, Johnnye Lewis, Nancy Maryboy, Johnny Naize, Luna Natoli, Bertha Nez, Chris Nez, Helen Nez, Seraphina Nez, Teddy Nez, Sandy Ramone, Paul Robinson, Tommy Rock, Bethany Sanchez, Kyle Swimmer, Kirena Tsosie, Shelly Valdez, Maria Welch, Katherine Zychowski

Funding:

UNM METALS Superfund Research Program – NIH/NIEHS 1P42ES025589-01A1

UNM Comprehensive Cancer Center P30 CA118100 UNM

UNM Clinical Translational Science Center UL1TR001449

Navajo Birth Cohort Study-ECHO+ – NIH/OD UG3/UH3D023344; CDC U01TS 000135

DiNEH Project – NIH/ES-014565, ES-012972

METALS Leadership: Johnnye L. Lewis, Ph.D., director; Matthew Campen, Ph.D., and Sarah Blossom, Ph.D., deputy directors

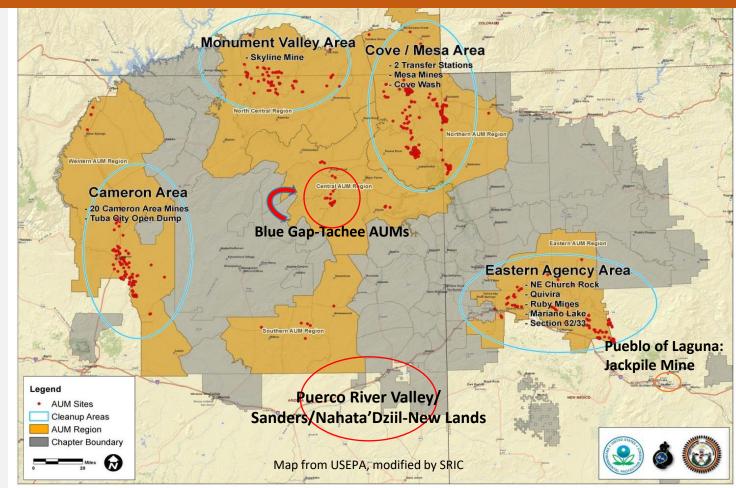
Relationships with commercial interests:

- Grants/Research Support: All funding through federal agencies, including NIH, CDC, EPA
- Speakers Bureau/Honoraria: None
- Consulting Fees: None

Disclaimer:

This material was developed in part under cited research awards to the University of New Mexico. It has not been formally reviewed by the funding agencies. The views expressed are solely those of the speakers and do not necessarily reflect those of the agencies. The funders do not endorse any products or commercial services mentioned in this presentation.

Approvals:


Human research is monitored and approved by UNM Human Research Protections Office (HRPO), the Navajo Nation Human Research Review Board (NNHRRB) and the New Mexico Cancer Care Alliance, as required by federal, state and Tribal law.

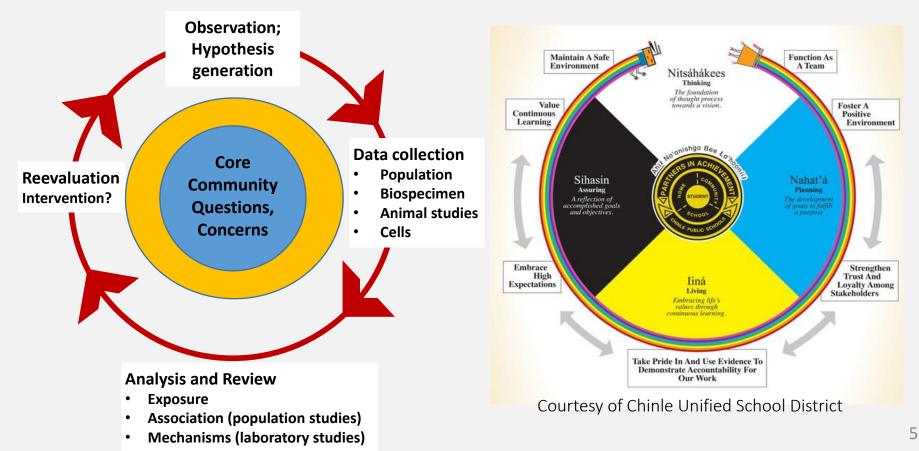
The Problem: U Mine Wastes Pervasive on Navajo, Laguna

The Numbers:

- 524 AUMs on Navajo Nation
- >10,400
 AUMs in
 Western U.S.
- Jackpile Mine at Laguna – once largest open-pit U mine in world
- All AUMs fall under federal Superfund law for assessment, remediation

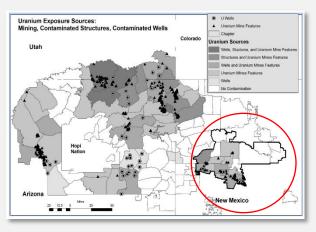
Community Engagement: Overarching Questions

- How did Native communities impacted by uranium mining help inform 25+ years of UNM's environmental health research?
- How have impacted Native communities participated in EH research?
- What are the roles of citizen and indigenous science in EH research?
- What have we learned from these community-based collaborations?



L-R: Cameron Farm assessment, 2019; Chris Nez at Claim 28 "Prius Rock", 2014; Red Water Pond Road Community, 2007; soil and plant sampling, Pueblo of Laguna, 2020

Models underlyng our community-partnered research: Western and Indigenous Commonalities



Major Community-Partnered Environmental Health Research Studies of the UNM Community Environmental Health Program (J. Lewis, director) and Southwest Research and Information Center (C. Shuey)

	DiNEH Project (RO1) (2001 – 2012)	First research to examine community impacts on health in partnership with and at request of 20 chapters in and adjacent to Eastern Agency of Navajo Nation (NIEHS)				
NBCS Name Bin Calvar Bindy Bindy ECHO	NBCS & NBCS/ECHO (2010 – ongoing)	Responsive to congressional mandate to community concerns from DiNEH Project: "What is exposure doing to the health of future generations?" (CDC, NIH-OD)				
Envolvemental influences Include the Market Provide Head Provide Head	Center for Native Environmental Health Research Equity (2015 – ongoing)	Comparative community partnered study with Navajo, Sioux, and Apsaloóke to examine ecosystem and health effects in tribes from distinct language groups and cultures impacted by mine waste, combined effects of microplastics and organic emissions from waste combustion. (NIEHS, USEPA, NIMHD)				
	UNM METALS Superfund Research and Training Center (2017-2022, 2022-2027)	Multidisciplinary and transdisciplinary team science research partnership with Navajo and Pueblo communities to examine environmental and health risks from mine waste to communities and design interventions to reduce and reverse impacts (NIEHS)				

Community questions about exposures have driven UNM environmental health research

DiNEH Project, 2002-2012

- Does U in drinking water increase risk of kidney disease?
- Do multi-pathway exposures to metals in mine wastes increase risks of chronic disease?
- **Population:** 1,304 in 20 chapters; 267 in biomonitoring


Navajo Birth Cohort Study, 2010-present

100 miles

nrollmen

AUMs
 Phase 2 Partner Communitie

- Do exposures to U mine waste affect child health, development?
- Do exposures to metals in mine wastes increase chronic disease?
- Population: >1,000 families totaling ~1,800 mothers, fathers, children; ongoing

- Do mixed-metal U mine wastes contribute to air, water and farmland contamination?
- Do exposures to U wastes result in immunologic, cardiovascular, pulmonary effects?
- **Populations:** Diné, Laguna across four communities

low Mexico

How have impacted tribal communities participated in EH research? Red Water Pond Road residents played active role in CRUMP (2002-'07), DiNEH Project (2006-2007) and EPA removal actions (2007-'12)

RWPRC residents helped measure gamma radiation rates and collect soil samples around homes next to the Northeast Church Rock Mine, leading to a USEPA-mandated RSE in 2006-2007 and three removal actions (below).

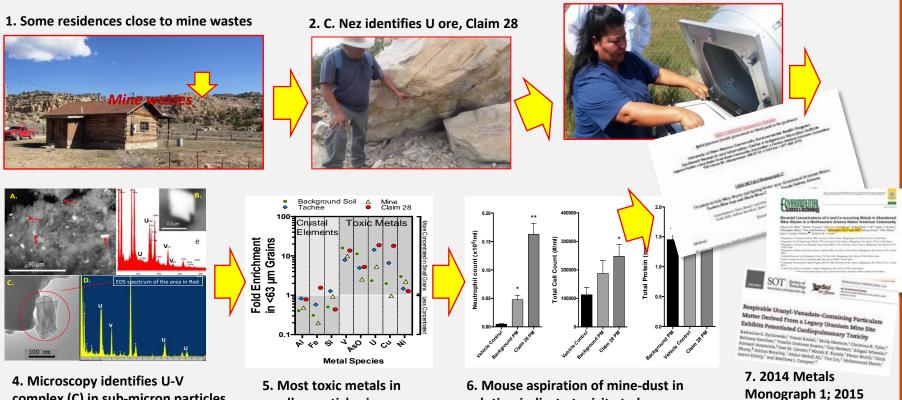
Three USEPA-ordered "interim removal actions" removed 18" to 25' of radium- and uranium-contaminated soils (~136,000 cy) from around homes, mine-water arroyo. Residents were "relocated" to hotels in Gallup for 3 to 7 months each time. 8

Blue Gap-Tachee residents joined field studies on effects of exposure to mine dusts 3. T. Shirley operates PM sampler

Cente

und

5


1

MET

M N N

Blake ES&T paper;

2018 Zychowski SOT

complex (C) in sub-micron particles

smaller particle sizes

solution indicate toxicity to lungs, autoimmune response

How have Diné communities participated in EH research? Cameron residents collaborated with METALS to assess contaminants in soils, plants on farmlands near AUMS

"Crustal Average" concentrations: the "normal" amount throughout the world

Example of UNM laboratory results for soils, roots and plants collected in a uranium-mining impacted community on the Navajo Nation (2019)

Farm Soil, Reots and Plant Grab Samples: Analtyical Results Reported by UNM Center for Water and the Environment (E. El Hayek, Ph.D.), Aug. 2, 2019
Site 1 – Plant 1 Site 1 – Plant 2 Site 2 – Plant 3

	*	-	Site 1 – Plant 1			Site 1 – Plant 2			Site 2 - Plant 3		Site 2 - Plant 4				
Element mg/kg dry weight of sample	Crustal Ave.*	Soil 0-8 (inches)	Soil 10-12 (inches)	Roots	Shoots	Soil 0-8 (inches)	Roots	Shoots	Soil 0-6 (inches)	Roots	Shoots	Soll 0-8 (inches)	Soil 5-10 (inches)	Roots	Shoots
AI	82,300	8580.5±1329	7960.8±4539	613.5±335	15e5	10851.7±1366	869.4±380	50.1±3	12391.9±2055	143.7±39	2.3e1	12215.9±1935	11086.3±439	353.3±98	
Fe	56,300	6463.1±197	6362.7±157	286 2±201		7022.1±170	405.6±215		6873±159	41.5e15	15	6709.6±51	6959.9±205	188.4±55	
Ca	41,500	9647.9±8549	11771.8±4506	13977.8±474	9007 8±686	10435 21355	14970.6±2255	763 64568	11936.6±1919	6727.5e2572	8237.1±211	13777 5±1358	13113.3±194	5048 9±2235	5364.4±1
Na	23,600	1801±171	2116.4±362	2748.5±143	6336.8±570	1837.6±298	2806 5+51	4453 5+310	1779.6±265	2915.4±247	12053.6±197	2095 4±255	2061.5±21	2841 3+822	8893.443
Mg	23.300	954±67	746.4±339	1214 3±192	1392.7±129	854.5±89	1373.9±239	1445.1±25	933±91	884.4±105	3252.4±75	973.4±78	\$38:10	1150.1±261	2068.34
К	20,900	4341.6±273	4874.9±278	5578.5±1306	7312.7±297	4476.2±501	4824.2±1051	3341.8±158	4444.8±502	5977±351	8422 3±211	4912.5±822	4738.2±23	2992.6±854	9676 St
P	1.050	268±22	283.2±3	735.5±110	1690.1±86	251.8±11	339.8±44	766.8±203	260.8±7	429.3±62	1695.5±78	296.5±19	258.8e7	331.03±86	1749.5#
s	350	372.3±4	327.9±101.2	1551±89	4411.5e496.5		1536±180	2441 3±60	322.7±39	1331.6±232.6	5788.1±301.5	504.7±42	603.3±5.4	1411.2±278	4286.6128
Mn	950	334.8±17	347.8±5	24.9±20		36 4:12	40.5±25		353.4±13		-	345.4±4	377±10		1000
Zn	70	25.1±1.3	28.2±1.5			31.7±0.0			35±0.8		-	31±0.5	32:3±1	100 B	
Gr	102	6.5±0.3	8.7±0.4		8 R)	6 4±0.4	Interes villa		7.7±0.5	S 20 3		7.5±0.1	7.2±0.5		
Cu	60	18,4±1.5	21±1.3		1.00	24.4±0.3		1.00	30±0.5	3 80 3		22 1=0.6	24.2±0.9		2
Co	25	2.1±0.4	2.9±1.1	+		2.9±0.2	100 M		2.8±0.3		-	2.4±0.2	2.9±0.3	100 B	2 (#1)
Cd	0,55	-		4.1	· •	1.000		1. 1.4	1 1 A 1		-	-			-
Pb	14	2.8±0.8	3.711.6	-		3.6±0.9			3.4±1.2	2	-	2.1±0.8	3.2±0.9		
Ni	84	-								2 a .			-		
Mo	1.2			- 7/	Concernance -			Sec. Sec.	A CONTRACTOR OF A	10		-	-		10 mil
As (ICP-MS)	1.8	2.4±0.3	3.2±0.5	0.7±0.2	0.4±0.1	2.5±0.7	0.7±0	0.4±0.3	2.1±0.6	0.4±0.1	0.4±0.1	2.5±0.4	2.9±0.1	1.5±1.6	0.7±0./
Sr	370	164.05±10	169±22	524.6±96	326.4±24	189.1±7	497.5±123	270.4±21	159.1±8.4	430.4±134	334.3±15	164.6±4	180,4±1,3	394.3±101	187,56
V U (ICP-MS)	129	22.8±1.5	25.5±1.6	-		28.8±0.6			29.6±0.8	-		28.2±0.2	29.2±1		-
	27	19+03	2.6+0.4	0.7±0.4	0.6+0.1	24±0.6	0.7+0.2	1.2+0.2	1.8±0.5	0.5+0.1	0.3+0.1	2.2±0.1	2.3+0.1	0.6+0.1	0.7±0.3

Measured concentrations from ICP-OES and ICP-MS tests

Preliminary findings: Most metals at or below crustal averages on farmlands; little uptate of toxic metals in Camelthorn; good uptake of key nutrients

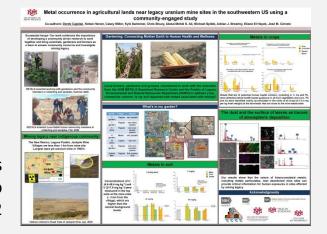
Citizen and Indigenous Science: Community Action Posters Describe Impacts

Center

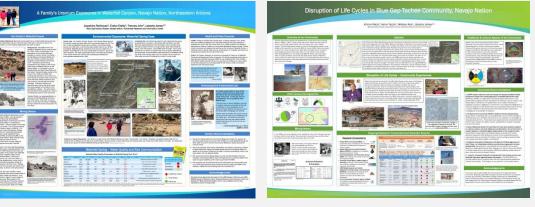
Superfund

ທ

A N

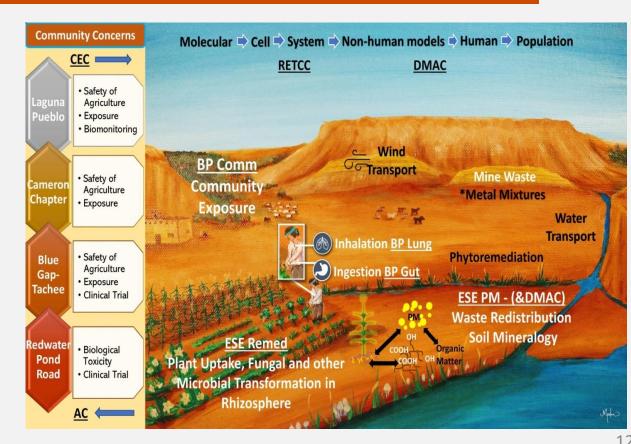

Σ

MN


L: RWPRCA "Living with Uranium Wastes for 50 Years and Four Generations" (2018, 2020

> R: Metals Assessments on Laguna Pueblo agricultural lands, 2022

Blue Gap-Tachee Chapter: Disruption of Life Cycles, 2018


A family's uranium exposures in Waterfall Spring, 2018

What have we learned from Community-engaged Research around uranium mining impacts?

- Community members:
 - field staff (25+)
 - study designers
 - participants in studies
 - leaders in policy initiatives
- Common toxic substances (U, V, As, Ra, Pb, etc.), common conditions across mines
- Collaborations can reduce health risks from mine wastes
- Citizen and indigenous science is science: validated, informed by traditional values, multidisciplinary
- Eager to engage their communities, join the next generation of scientists

COLLEGE OF PHARMACY

1ETAL EXPOSURE AND TOXICITY ASSESSMEN ON TRIBAL LANDS IN THE SOUTHWEST

National Institute of Environmental Health Sciences

Mineralogic composition and nanoparticle matter in AUM wastes

José M. Cerrato

Associate Professor

Department of Civil, Construction & Environmental Engineering

October 4, 2021

Co-Authors: Melissa, Gonzales, Adrian Brearley, Joseph Galewsky, Carmen Velasco, Isabel Meza, Johanna Blake, Mehdi Ali, Sumant Avasarala, Adrian Brearley, Eliane El Hayek, Jorge Gonzalez, Juan Lezama

Funding:

NIH/NIEHS P42 ES025589 (UNM METALS)

This material was developed in part under cited research awards to the University of New Mexico. It has not been formally reviewed by the funding agencies. The views expressed are solely those of the speakers and do not necessarily reflect those of the agencies. The funders do not endorse any products or commercial services mentioned in this presentation.

OVERARCHING QUESTIONS

- How do U and other metals occur and behave in mine waste sites?
- What is the mineralogical composition and size of mine waste particles?

Funding: NIH/NIEHS P42 ES025589 (UNM METALS)

This material was developed in part under cited research awards to the University of New Mexico. It has not been formally reviewed by the funding agencies. The views expressed are solely those of the speakers and do not necessarily reflect those of the agencies. The funders do not endorse any products or commercial services mentioned in this presentation.

How do we answer this question? Analytical Facilities & Training

- Aqueous Chemistry Analyses: Inductively coupled plasma (ICP)
 - a) Optical emission spectrometry (ICP-OES)
 - b) Mass spectrometry (ICP-MS)
 - c) Ion chromatography (IC)
- Solid Analyses

Postdoc, Graduate, Undergraduate, and High School Level Training!

Use of Spectroscopy and Microscopy Methods

X-ray Spectroscopy

Electron Microscopy

RESULTS: Uranium, Arsenic, and pH in Water around Claim 28 Mine in Blue Gap

Sample	Parameter					
	U (μg/L)	As (µg/L)	рН			
Blue Gap Tachee Spring	163.2	57	7.4			
Blue Gap Tachee Seep	135.4	9.6	3.8			
Blue Gap Tachee Well	2.1	36 7	8.7			

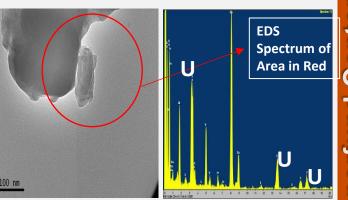
Blake et al. 2015 Blake et al. 2019

RESULTS: Solid Elemental Composition

Sample Name	Uranium (mg/kg)	Vanadium (mg/kg)	Arsenic (mg/kg)	lron (mg/kg)
Blue Gap Tachee (Mine Waste 1)	3118	3082	30	4371
Blue Gap Tachee (Mine Waste 2)	7345	919	9	77006
BRS	BDL	BDL	BDL	24013

BRS – Baseline reference soil: control from Blue Gap Tachee (Navajo)

RESULTS


- Discovery of previously unrecognized nanoparticles of U-bearing minerals (metals mixtures) in:
 - AUM mine waste samples and associated soils.
 - Legacy accumulation of airborne dust in church attic (Laguna Pueblo).
 - Weathering products of U-bearing strata from Jackpile mine – Laguna Pueblo.
- U-V-bearing minerals in nanoparticles are exclusively in respirable PM 2.5 fraction.
 - BGT mine waste samples exhibit high toxicity. Zychowski et al. (2018) Toxicological Science.

Mine wastes

Electron microscopy shows that Blue Gap/Tachee Claim 28 mine waste contains clusters (<1 um) of carnotite $(K_2(UO_2)_2(VO_4)_2 \cdot 2H_2O)$ nanoparticles that are dispersing into individual nanoparticles that adhere to surfaces of other mineral grains.

bert Sul S MET/ **MND**

HOW CAN YOU USE THESE FINDINGS?

- Knowledge of mineralogical composition provides insights about metal mobility for understanding risks to human health and identifying remediation strategies.
- Important to recognize exposure to hazardous metals mixtures carried by nanoparticles can occur by multiple pathways. Metals toxicity is key.
- Inhalation and ingestion of nanoparticulates are exposure pathways for humans and livestock.

Findings used to document community concerns; engage community members; bring community members into STEAM studies; apply indigenous values to air monitoring

The role of biogeochemistry in metals bioavailability and cytotoxicity

Eliane El Hayek

Research Assistant Professor

College of Pharmacy, UNM Health Sciences

Department of Civil, Construction & Environmental Engineering, UNM

October 4, 2021

Co-Authors: Lucia Rodriguez-Freire, Cherie L. De Vore, Johanna Blake, Sebastian Medina, Katherine Zychowski, Russell Hunter, Carmen A. Velasco, Chris Torres, Derek Capitan, Kelsie Herzer, Taylor Busch, Benson Long, Tamara Howard, Fredine T. Lauer, Mehdi Ali, Adrian Brearley, Michael Mann, Michael N. Spilde, Stephen Cabaniss, Jennifer A. Rudgers, Scott Burchiel, Matt Campen, José Cerrato

Funding: NIH/NIEHS P42 ES025589 (UNM METALS)

This material was developed in part under cited research awards to the University of New Mexico. It has not been formally reviewed by the funding agencies. The views expressed are solely those of the speakers and do not necessarily reflect those of the agencies. The funders do not endorse any products or commercial services mentioned in this presentation.

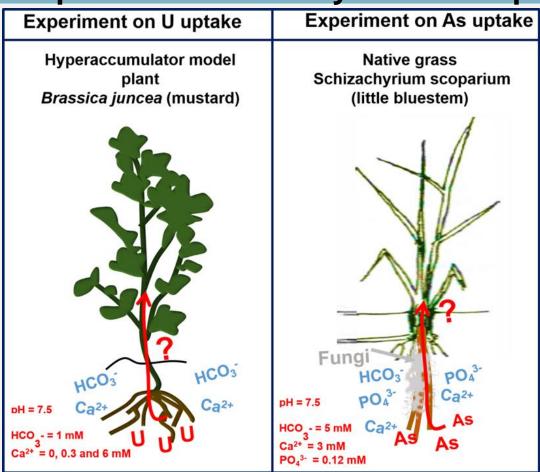
METAL EXPOSURE AND TOXICITY ASSESSMENT ON TRIBAL LANDS IN THE SOUTHWEST

SOUTHWEST RESEARCH AND INFORMATION CENTER

National Institute of Environmental Health Sciences Your Environment, Your Health.

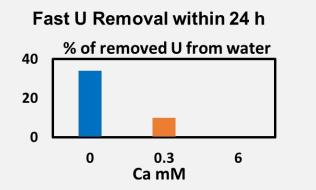
OVERARCHING QUESTIONS

- How water chemistry affects the bioavailability of metals in plants?
- Can fungi help enhancing metals (arsenic) uptake and bioaccumulation in plants?
- How cytotoxicity can change with respect to the chemical physical form of metal in the environment?


How do we answer these questions? Greenhouse experiments to study metals in plants

How do we answer these questions? Greenhouse experiments to study metals in plants

RESULTS: Water chemistry effects on U bioavailability


Ca 0 mM

Ca 0.3 mM

Ca 6 mM

Plants exposed to U concentrations (30-700 µg/L) in carbonate solutions at circumneutral pH over a range of Ca concentrations:

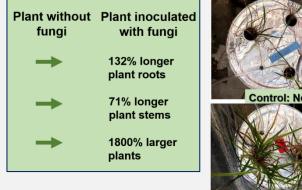
10 µm

U + No Ca

U +Low Ca

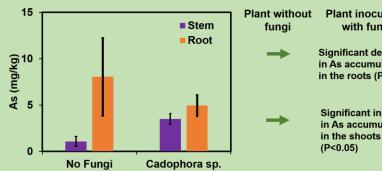
U +High Ca

Plants exposed to high U concentrations (19.04 mg/L)


At low Ca (<0.3 mM), U can still be immobilized in the roots of the plant.

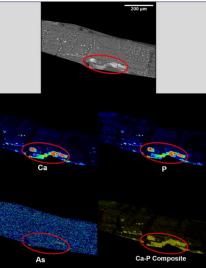
High Ca (6 mM) helps U enter deeply into root structures and go up to the stem and the leaves of the plant.

RESULTS: Water chemistry and fungi effects on As bioavailability and toxicity

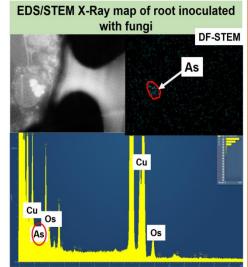


Growth of plants in the presence of fungi

As content in the plants

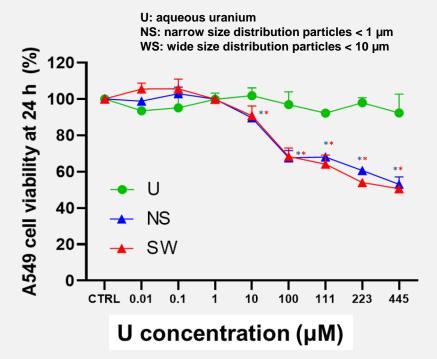

Plant inoculated with fungi

Significant decrease in As accumulation in the roots (P<0.05)


Significant increase in As accumulation

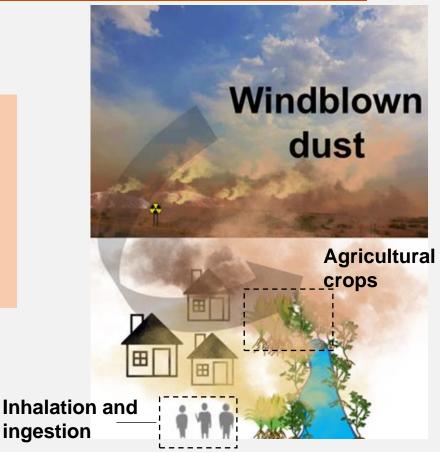
Integration of spectroscopy to identify sites of accumulation in the plant

Association Ca-P-As on root surface


Intracellular As accumulation in the presence of fungi

RESULTS: How the chemical physical form of metal affects its cytotoxicity?

<u>The toxicity of Carbon-rich U-bearing particles were used as a solid particulate phase of U</u> and compared to soluble U salts in airway epithelial cell model (A549)



The particulate form of U in carbonrich particles enhances its bioavailability and toxicity in comparison to aqueous uranium

Effects of the chemical physical form of uranium on its cellular toxicity

Understanding environmental health risks needs understanding bioavailability and toxicity which depend not only on the level of metals concentration but also their chemical physical forms in their surrounding environment.

How we involved community members in the process?

Gardening: Connecting Mother Earth to Human Health and Wellness

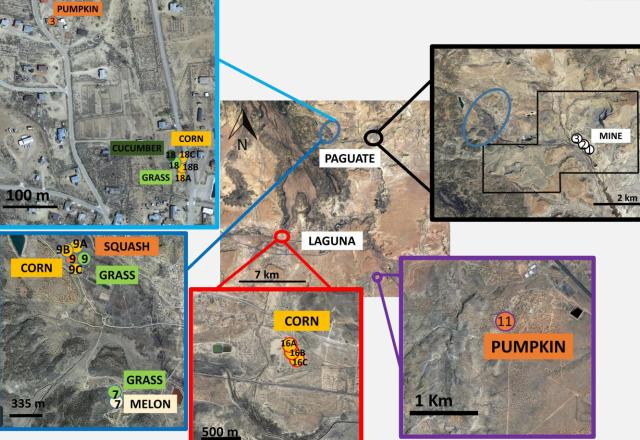
A research partnership with gardeners and farmers on the Pueblo of Laguna to look for metals on agricultural lands near legacy uranium mine sites

What's in my garden?

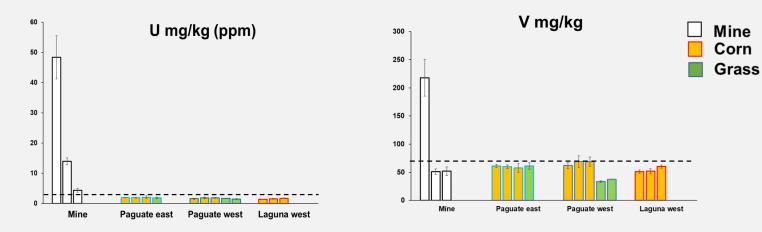
Local farmers, gardeners and growers volunteered to work with the scientists from the UNM METALS Superfund Research Center and the Pueblo of Laguna Environmental and Natural Resources Department (ENRD) to address a key community concern: Is my soil impacted with metals associated with mining?

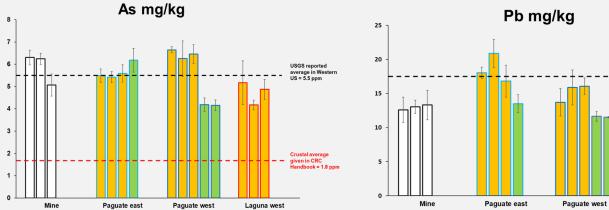
Vietnam Veteran's Road View of Jackpile Mine, Apr. 2022

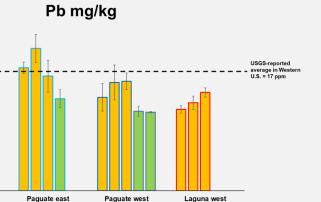
METALS scientist working with the community members in collecting soil samples, Summer 2020



Sampling locations for data reported here

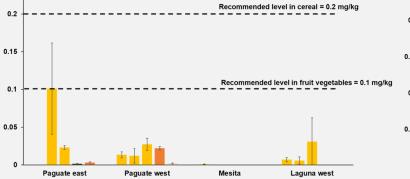

J		
3	$\mathbf{V}\mathbf{V}$	'

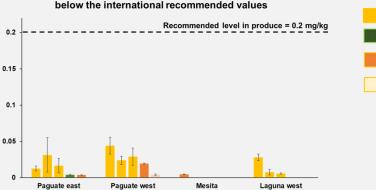

Village	Samples
Paguat e	soil, pumpkin
Paguat e	soil, melon, grasses
Paguat e	soil, corn, squash, grasses
Mesita	soil, pumpkin
Laguna	soil, corn
Paguat e	Soil, corn, cucumber, grasses
Paguat e	Soil, grasses, roots
	Paguat e Paguat e Paguat e Mesita Laguna Paguat e



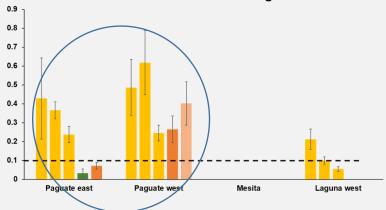
Center Superfund S UNM METAI

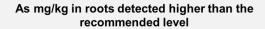
Metals in soil

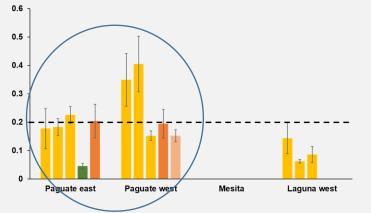




Center Superfund **UNM METALS**


Metals in crops


Pb (mg/kg) in corn and fruit detected below the international recommended values



Pb mg/kg in roots detected higher than the recommended level for root vegetables

Corn

Cucumber

Squash

Melon

As (mg/kg) in corn and fruit vegetables detected below the international recommended values

HOW CAN YOU USE THESE FINDINGS?

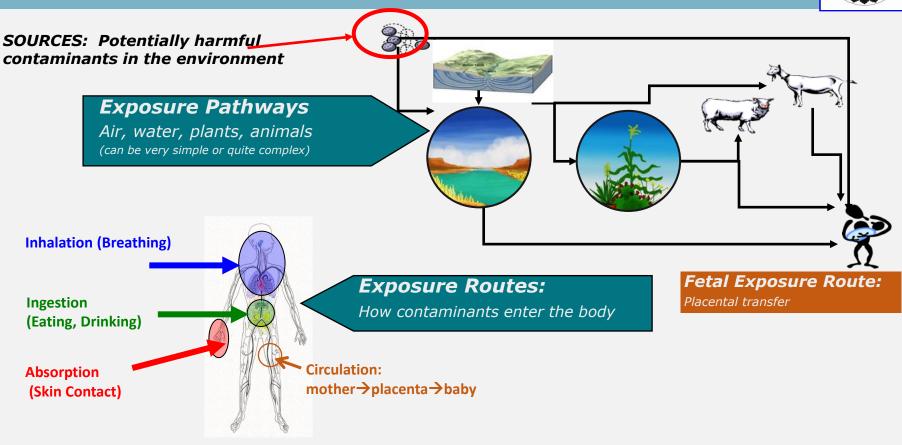
- Plants a pathway of exposure but a major player in understanding environmental chemistry and creating solutions
- Chemical parameters in the rhizosphere can enhance or decrease metals bioavailability and plants uptake; e.g., high U and Ca levels at circumneutral pH can increase U uptake to the shoots of the plant
- Studying bioavailability and toxicity is important to understand environmental health risks which depend not only on the level of metals concentration, but also on their chemical physical forms in their surrounding environment.
- Uranium and vanadium exceeding background were found ONLY in topsoil samples collected from the Jackpile Mine.
- Metals that are of potential human health concern, including U, V, As and Pb, were detected below health-based guidance in all fruit, vegetables and corn.
- Although the impact of mining legacy was not detectable in our sampling sites, we should note that these tests are limited to a certain number of locations; further studies are needed to understand the mobility of dust around the mine site.

Diné Network for Environmental Health (DiNEH) Project: Documenting exposures to legacy uranium mining wastes on the Navajo Nation Esther Erdei, Ph.D.

10.09.2009

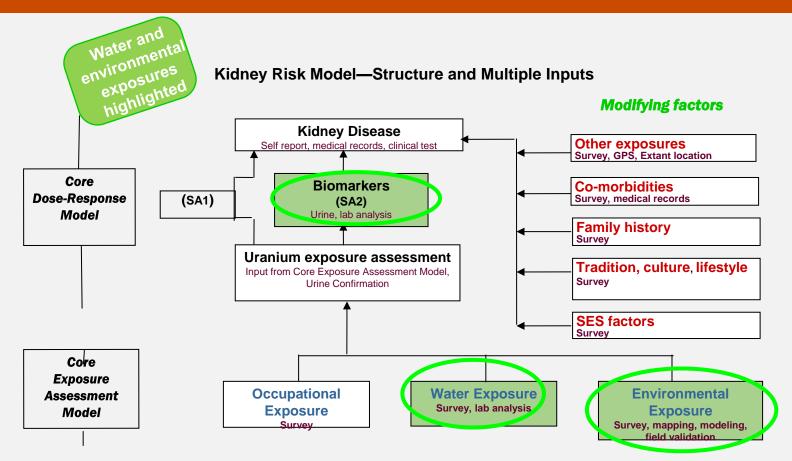
Call for action to protect water sources

- Violation of Human Rights (UN 1948)
- Respect toward traditional knowledge, practices; support sustainability of all interactions w/ nature & non-human life
- Water is Life movement Water is Life Blood of Mother Nature – human body is 73% H₂O
- Lack of USEPA risk assessment methodology for Tribal use – Animas River U contamination from CO, UNM CEHP & UoA collaboration
- Rural areas reviews own works, 2 publications (Nov 2018 & Apr 2019) in *Current Epidemiology Reviews*
- Environmental justice, environmental racism, environmental privilege


ente

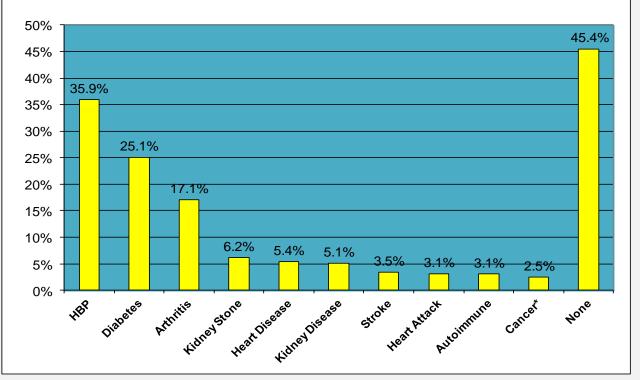
und

Supert


S

Identifying Exposures: Pathways, Routes

DiNEH Project Risk Model


Sources of inputs to estimate each participant's total exposure

DiNEH Survey Responses – Phase I

Prevalence of Self-Reported Health Conditions Among 1,304 DiNEH Survey Participants

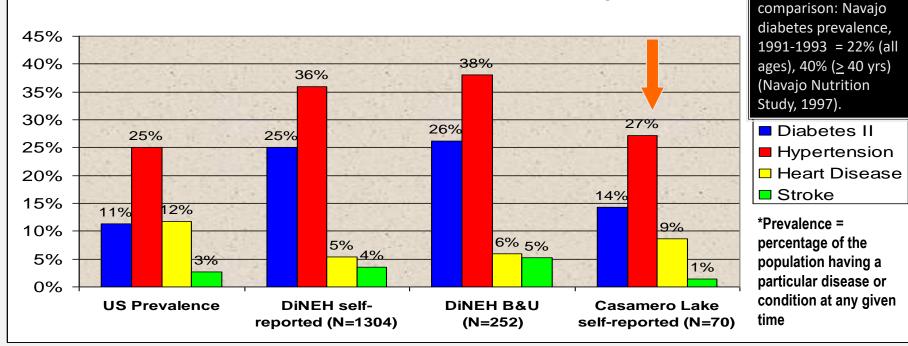
(*Cancer prevalence based on 1,011 participants surveyed)

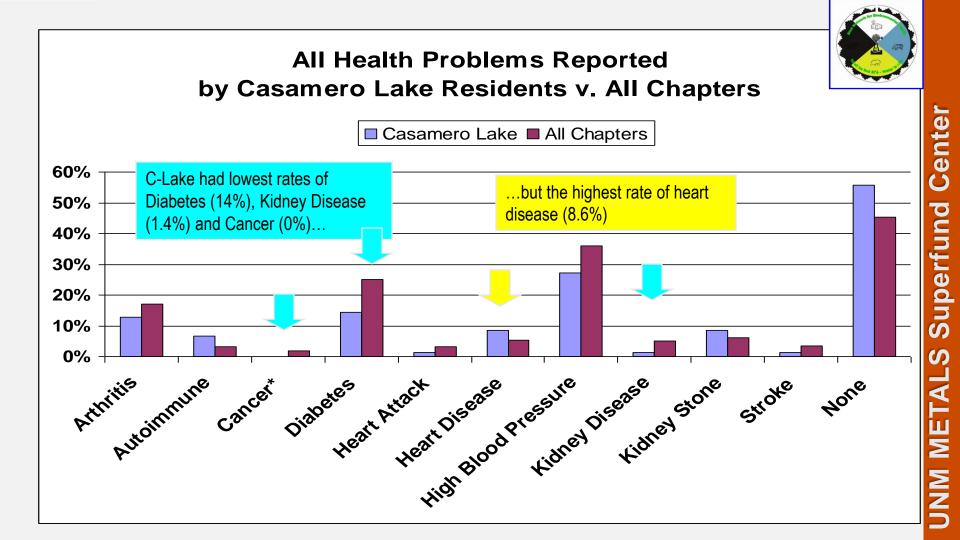
- High prevalence of cardiovascular disease and diabetes in DiNEH participants
- Do chronic exposures to U mine wastes exacerbate existing disparities in metabolic diseases?

Cente

<u>Superfund</u>

S


METAL


MN

DINEH Survey Results for Casamero Lake Chapter: Health Problems

Prevalence* of Self-reported Health Problems, Casamero Lake Chapter Participants Compared with Rates for U.S., All DiNEH Participants, and DiNEH Blood and Urine Participants

Goal of the DiNEH Phase II sub-study

- Direct response to community members' requests for research on immune system function during the capacity building and environmental risk evaluation work
- Address possible pathways within the human body in association with environmental uranium and other heavy metal (V, Pb, Hg, Ni, Cu, and As) exposures
- Find early indicators of health effects from legacy exposures

Center und Superf ທ

DiNEH Project Phase II Biological sample collection

- Samples collected from 267 individuals, evenly distributed across 20 chapters (chart)
- 14 community-based collection events
- IHS collaboration through CUE-JTH Program
- Early markers, showing alterations in immune cell distribution and activity
- Biomonitoring to determine urinary metals/metalloids – U, total As, Ni, Cu, V

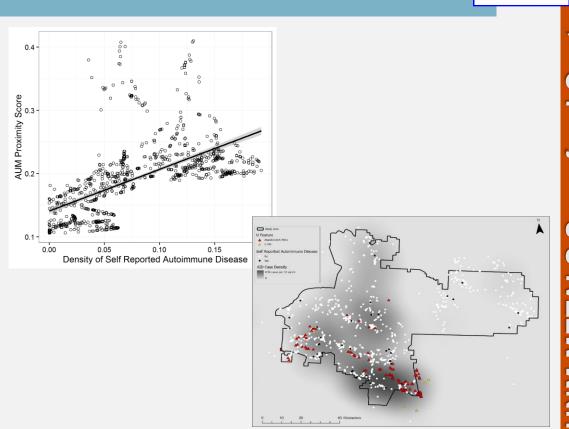
Chapter	# DiNEH Survey Participants (1,304)	# DiNEH Participants in B&U Collections (267)
Baca-Prewitt	96	32
Becenti	60	22
Casamero Lake	70	14
Church Rock	69	13
Coyote Canyon	65	18
Crownpoint	71	20
Iyanbito	61	17
Lake Valley	61	9
Littlewater	65	11
Mariano Lake	69	19
Nahodishgish	60	15
Ojo Encino	65	2
Pinedale	64	5
Pueblo Pintado	65	9
Smith Lake	69	19
Standing Rock	72	17
Thoreau	66	18
Torreon	67	0
White Rock	26	1
Whitehorse Lake	63	6

DINEH PROJECT RESULTS (AVERAGE AGE 55)

ACTIVE-MINING ERA EXPOSURES (WORKERS* AND FAMILIES) → INCREASED KIDNEY DISEASE, ADD TO OTHER KNOWN RISKS

* Many workers had already died from lung cancer, more family members than workers

ONGOING ENVIRONMENTAL LEGACY EXPOSURES → INCREASED RISK FOR HYPERTENSION, AUTOIMMUNITY, AND MULTIPLE CHRONIC DISEASES


Based on proximity to waste and self-reported activities creating contact with waste Autoimmunity also linked to uranium in drinking water

Hund et al., 2015, Journal of Royal Statistical Society, Series A, Statistics in Society Erdei et al., 2019, Journal of Autoimmunity

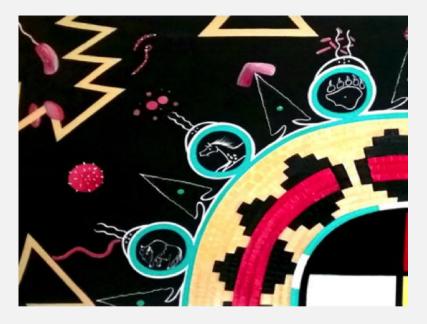
Evidence of immune dysregulation in Diné adults uranium associated increase in autoantibodies

uperi

- Self-reported autoimmune disease diagnosis -associated with proximity to AUM (n=1,304).
- Prevalence = 3.1% in both phases, lower than published national rates (3.0%-7.5%)
- Aggregation of AID cases increased in Chapter with abandoned U mines/milling sites (map)

Autoantibody production and detection

- 239 samples analyzed at IHS LabCorp in Phoenix, AZ
 - (CLIA certified clinical diagnostic laboratory)
- <u>Antinuclear antibody</u> (ANA) testing using flow cytometry-based microbead assay
- Fluorescence staining and microscopy (traditional method; figure, top right) vs. new faster technique by IHS LabCorp
- Microbeads special <u>panel of autoantigens</u> tested; positive response to specific autoantibodies may indicate connective tissue disease, Sjögren's syndrome, all clinically relevant.
- ~27.2% of individuals (n=239; average age 55 ± 14 yrs) had detectable anti-nuclear antibodies
- ANA positivity associated with proximity to waste sites, certain metals in drinking water



Disruption of immune function → autoantibodies seen through the lens of a Native artist

Healthy immune cell – protections in place

Immune cell dysfunction – protections fighting each other

Paintings by Mallery Quetawki, Zuni Pueblo

Navajo Birth Cohort Study initiated in 2010 to address the impacts of uranium exposure on child health outcomes

Birth Outcomes, Child Development

Home Environmental Assessment

- Locations of nearly 600 homes
- Indoor dust
- Radon
- Gamma survey indoors and outdoors
- Drinking water

Enrollment Survey

- Occupational history
- Activity Survey
- Family history of exposures

Biomonitoring (mom, baby)

- Urine metals (36-element panel)
- Whole blood (Pb, Cd, total Hg)
- Serum (Cu, Sè, Zn)

Assess birth outcomes and child development from birth to age 9.

NBCS→ECHO+

NBCS (2010-2018)

Enrolled 780 women during pregnancy, exposure assessment, assessment of child

development through 1 year of age

NBCS/ECHO

Enrolled 481 (179 pregnant mothers and 302 children from NBCS

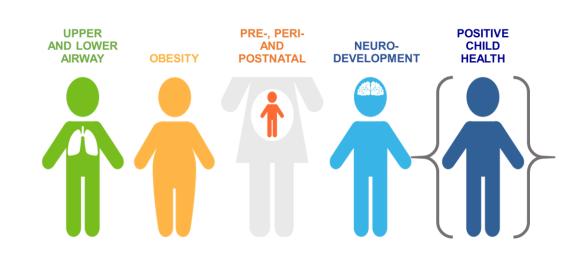
NBCS-ECHO Plus – 2019-2024

- Continue enrollment to 1200 (345 children and 60 new pregnant mothers)
- Add common elements developed by ECHO consortium (allows us to compare exposures/outcomes with national sample
- Assessment continues through the age of 9

ECHO (Environmental influences on Child Health Outcomes) Funded by NIH Office of the Director

MISSION:

To enhance the health of children for generations to come


VISION:

To become one of our nation's pre-eminent research programs in child health

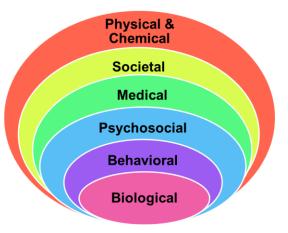
LONG-TERM GOALS: Scientific: To inform high-impact programs, policies, and practices that improve child health

Strategic: To establish best practices for how to conduct Team Science in the 21st century

Focus on key pediatric outcomes

Data Collection

Pregnancy

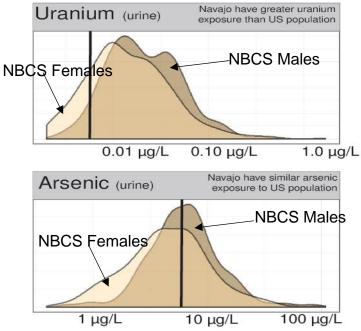

- Surveys and questionnaires
- Blood and urine for metals


At delivery:

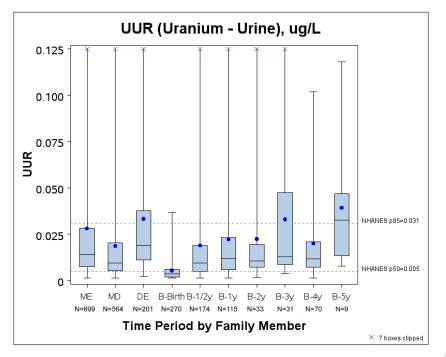
Collect blood and urine for metals

From birth through 9 years of age:

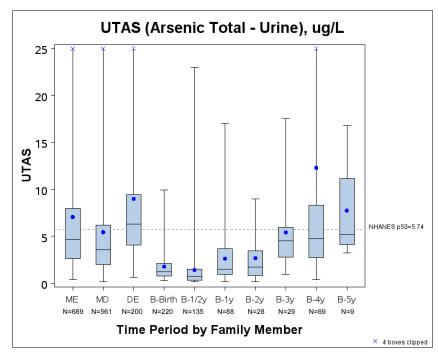
- Collect data from surveys and questionnaires
- · Collect biospecimens every year
- Annual ASQ assessment
- Between the ages of 3-5 and again between the ages of 6-8 we conduct physical and neurodevelopmental assessments.


Exposures seen from biomonitoring of key metals

Uranium (kidney toxicity; estrogen mimicker)


- Black vertical line represents the 50th percentile for US population
- NBCS median urinary uranium concentrations exceed the US median (36% of men and 26% of women have urine uranium above national norms

Arsenic (cancer, immunotoxicity)


- Distribution of urine total arsenic in NBCS females and males
- NBCS median urinary total arsenic concentrations are similar to the US median
- Exposure sources very different in US, population exposures primarily seafood, rice

NBCS/ECHO: Exposures begin in childhood By age 4, children are reaching adult concentrations

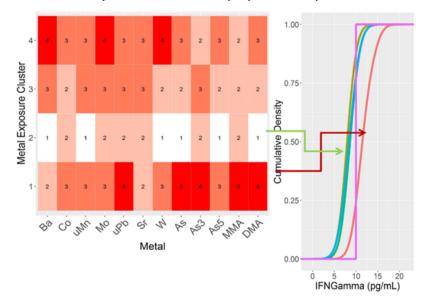
- Median concentration for urine uranium in the US *adult* population from NHANES (2015-16) = (0.005 µg/L)
- NBCS children birth to age 4 = 0.0035 0.013 μg/L

- Median concentration for total arsenic in urine in the US adult population from NHANES (2015-16) = (5.41 µg/L)
- NBCS children birth to age 4 = 1.2 4.5 μg/L

Exposures reflect patterns of mixtures

- More than 20% of moms have low exposures
- Overall rate of preterm birth in cohort 7%
- ~45% have mixture exposures that create a 3fold greater risk of preterm birth (clusters 5 & 6)
- Mercury modulates the risk downward-indicates complexity of metals toxicity and mixed metals effects

Summary of mean posterior probability from the fully adjusted model and relative risk of preterm birth by exposure cluster


Exposure Cluster	Group Size (N)	Empirical Probability	Mean Posterior Probability (95% CI)	Relative Risk (95% CI)	Probability EC _i >EC1
1	88	0.034	0.045 (0.018-0.081)	Reference Group	Reference Group
2	31	0.032	0.049 (0.012-0.109)	1.362 (0.25-3.638)	50.46
3	48	0.042	0.059 (0.023-0.108)	1.647 (0.44-3.936)	65.97
4	67	0.090	0.093 (0.049-0.148)	2.587 (0.9-5.678)	92.57
5	141	0.092	0.097 (0.065-0.134)	2.706 (1.059-5.768)	96.26
6	42	0.119	0.117 (0.058-0.19)	3.295 (1.046-7.437)	95.74
*Posterior probability >0.95 that EC is above 1 compared to reference cluster (EC2).					

Potential immune dysregulation associated with metals

Table 4. Significant Associations of Cytokineswith Metals in the NBCS

Cytokine	Univariable model	Multivariable model
IFNα	tAs↑, DMA↑, MMA↑	DMA↑
IFNγ	Hg↑	Hg↑
IL-4	AsIII↓	AsIII↓
IL-7	Mn↓	Mn↑, MMA↓
IL-17A U↑, Mn↑, AsIII↓ U↑, Mn↑		U↑, Mn↑, AsIII↓
IL-29	Mn↑, AsIII↓, DMA↓, MMA↓	Mn↑, AsIII↓, MMA↓

¹ Significant (p<0.10) association with metal. ² Significant metal predictors after variable selection. All metals were measured in urine. tAs=total arsenic; MMA and DMA are mono and dimethylated metabolites of As, respectively; Hg=mercury; AsIII=arsenite; Mn=manganese, U=uranium. Directionality: positive ↑; negative↓ N=200 Inflammatory marker levels vary by metal exposure clusters

Jennifer Ong PhD (dissertation) Debra MacKenzie Li Luo

Detailed Neurodevelopmental Assessments (between ages of 3-5 and again at 7-8)

Domain	Measure
Cognitive	DAS-II
Language	OWLS-2
Adaptive skills	Vineland
Social-Emotional	CBCL, SRS-2 (questionnaires)
Behavioral Observation	TOF, CARS-2
Medical	Medical and Developmental History, Physical Exam
Social cognitive functioning	Eye tracking measure

ND Assessment Summary

- Navajo preschoolers performed within the average ranges across multiple direct assessments and parent-report measures, except on the verbal domains across both modalities.
- High prevalence of language disorder independent of intellectual disability, general developmental delay, and autism spectrum disorder (validity of test instrument?, other reasons?)

 See Posters Nozadi, Lecke, Wegele, Rennie for NBCS related work

Outcomes of NBCS/ECHO Study

- Assess the relationship between exposures to environmental contaminants (metals, others) with ND trajectories and other health outcomes.
- Compare NBCS to national sample of over 50,000 children to increase our power to identify impacts of environmental exposures on child health as well as increasing our understanding of the influence of early life environmental exposures on health trajectory of Navajo children.

The Navajo Birth Cohort Study - NIH OD UH3OD023344 and CDC U01 TS 000135.

The presented data are solely the responsibility of the authors and do not necessarily represent the official views of the NIH, Centers for Disease Control and Prevention, or the Department of Health and Human Services.

UNM-HSC

Johnnye Lewis, Ph.D. David Begay, Ph.D. Curtis Miller. Ph.D. Eszter Erdei, Ph.D. Courtney Burnette, Ph.D. Debra MacKenzie, Ph.D. Chris Vining, PhD Carolyn Roman, PhD Ashley Wegele, MPH Becky Smith **Carla Chavez** Miranda Caiero **Bernadette Pacheco** Jennifer Ong **CJ Laselute** Malcolm Benally Elena O'Donald, Ph.D. Joseph Hoover, Ph.D. Vanessa De La Rosa, Ph.D. Sara Nozadi. Ph.D. Tim Ozechowski, Ph.D. Ji-Hyun Lee, Ph.D. Li Luo. Ph.D. Li Li. PhD Ruofei Du. Ph.D. Shea McClain Joey Davis Nina Marley Mallerv Quetawki **Priscilla Begav**

Benita Brown

Wileen Smith

Shasity Tsosie

Roxanne Thompson

Doris Tsinnijinnie Justina Yazzie Monica Begay

UNM-HSC, cont. Brandon Rennie, PhD Ellen Geib, PhD

Latisha Joseph-Lewis Valsitta Curley Frienda Clay

SRIC Chris Shuey, MPH Lynda Lasiloo Sandy Ramone Teddy Nez Maria Welch Monique Tsosie Cora Phillips Jazmin Villavicencio

UCSF Bennett Leventhal, MD Young Shin Kim, MD, Ph.D. Somer Bishop, Ph.D. Mina Parks, PhD Whitney Ence, PhD Hosanna Kim, MD Emma Salzman, PsyD Katy Ankenman Patricia Hong Sheila Ghods Shuting Zheng Julia Morgan Charalel

<u>NNDOH</u>

Qeturah Anderson **Chanda Becenti Mae-Gilene Begay** Cecelia Begay Nikki Begay Valsita Curlev Velma Harold Yolanda Joseph **Priscilla Mitchell** Anita Muneta Olivia Muskett Anna Rondon Melissa Samuel **Stacy Thompson** Rebecca Tsosie Josev Watson **Berlintia Yazzie** Kathleen Nez

PL-638 HOSPITALS

Delila Begay Abigail Sanders

CDC/ATSDR/DLS/IRAT

Kathleen Caldwell, Ph.D. Candis Hunter, MSPH Elizabeth Irvin-Barnwell, Ph.D. Angela Ragin-Wilson, Ph.D. Cynthia Weekfall

CONSULTANTS

Adrienne Ettinger, Ph.D. Perry Charley

> Navajo Team Members Other Native Team Members Bold indicates Current Team Non-bold are former team members

NAIHS

Doug Peter, M.D.

Loretta Atene

Lorraine Barton

Francine Begav

Dorena Bennally

Bobbie Clawson

LeShellv Crank

Mvra Francisco

Johnna Rogers, RN

Charlotte Swindal, CNM, RN

Della Reese

Diedra Sam

Marcia Tapaha

Beth Chee

Lisa Kear

Loretta Christensen, M.D.

Ursula Knoki-Wilson, CNM, MSN

The people of the Navajo Nation:

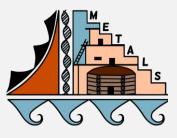
- > 1000 participating Navajo families
- Many supporting chapters
- HEHSC, Tribal and Agency Councils, Executive Branch, NNEPA, GIB
- NAIHS & PL-638 hospital laboratory staff, leadership, and health boards

And many others who have contributed to and supported this work!

Our funders:

NBCS/ECHO is funded by NIH/OD (2016-2023) UG3/UH3D023344.

Original Navajo Birth Cohort Study (2010-2018) was funded by the Centers for Disease Control and Prevention (U01 TS 000135).



Thinking Zinc: A nutritional intervention for metal toxicity

COLLEGE OF PHARMACY

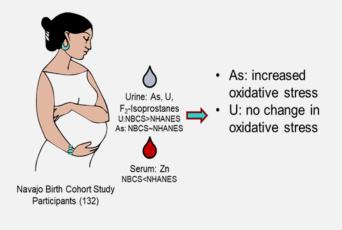
SOUTHWEST RESEARCH AND INFORMATION CENTER

National Institute of Environmental Health Sciences Your Environment, Your Health.

Debra MacKenzie, PhD and Erica Dashner-Titus, PhD Laurie Hudson, PhD; Esther Erdei, PhD, MPH; Chris Shuey, MPH; David Begay, PhD; Sarah Henio-Adeky; Li Luo, PhD, Tamara Anderson-Daniels

Paintings by Mallery Quetawki, Zuni Pueblo

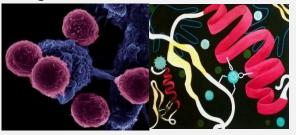
Funding:


NIH/NIEHS P42 ES025589 (UNM METALS)

This material was developed in part under cited research awards to the University of New Mexico. It has not been formally reviewed by the funding agencies. The views expressed are solely those of the speakers and do not necessarily reflect those of the agencies. The funders do not endorse any products or commercial services mentioned in this presentation.

Experimental and Population Studies

As and U share mechanism of action U less potent in tested activities


		ARSENIC	URANIUM
	CYTOTOXICITY	≥ 1 µM	>>10 µM
	ROS GENERATION	Sustained	Transient, < As
	HO-1 induction	High	Low
	PARP-1 ZF PEPTIDE	Interaction	Interaction
	PARP-1 ZINC LOSS	Yes	Yes, U < As
	PARP-1 INHIBITION	Yes	Yes, U < As
	DNA REPAIR INHIBITION	Yes	Yes, U < As
1 A	PROTECTION BY ZINC	Yes	Yes
	ZF TARGET SELECTIVITY	Yes	No

1 Cent Superfund S UNM ME.

Why Zinc?

Zinc-binding proteins are regulators of cell function.



Painting by Mallery Quetawki

Low zinc status (<70 ug/dL) in many members of the Navajo Nation.

As target selectivity: C3H1 and C4 zinc fingers

Supplemental zinc is protective against As/U.

>40 bench research publications by UNM METALS researchers

*other metals, including Cd

Zinc supplements have a good safety profile.

Zinc supplementation in elderly or zinc deficient subjects improves immune and DNA damage endpoints.

Zinc is protective

1.2

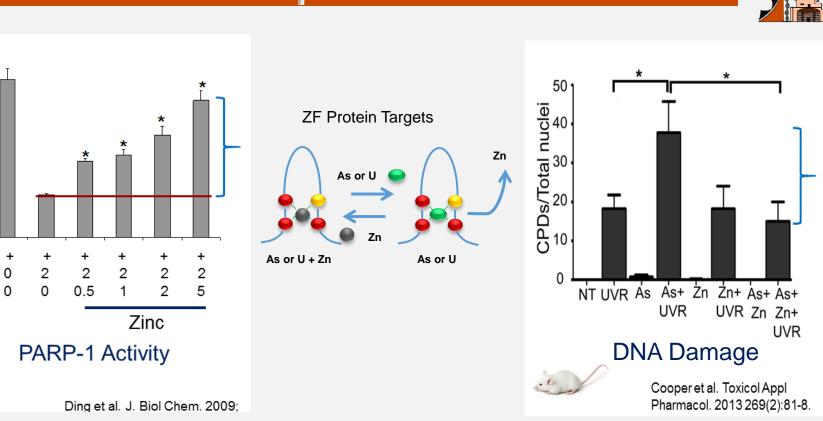
0.8

0.6

0.4

0.2

0

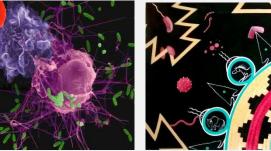

AsIII [uM]

Zn [uM]

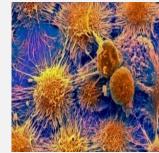
1 -

PARP-1 Activation (Normalized Fluorescence Intensity)

UVR



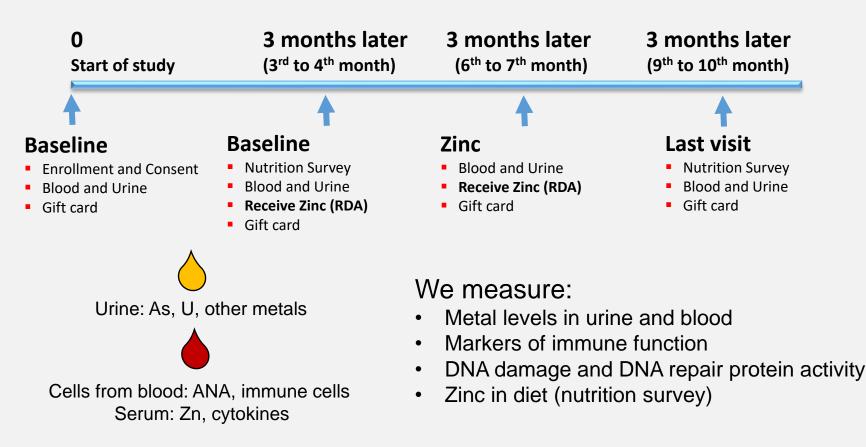
Thinking Zinc


Long Term Goal: Determine whether dietary zinc supplementation reduces metal-induced human disease

Project Goal: Conduct clinical trial of dietary zinc supplementation to assess effects on biomarkers of metal-induced toxicity

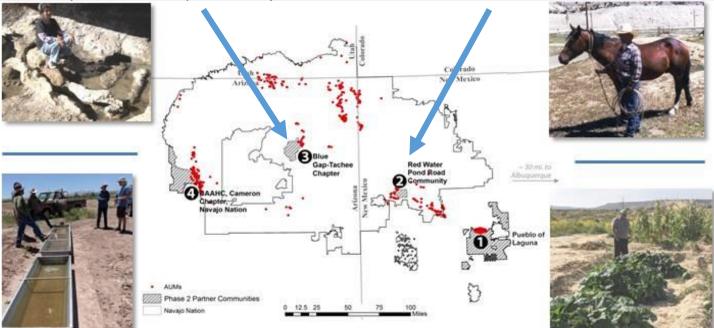
Immune Disorders

ANA-markers of autoimmunity Immune cell numbers and types Immune cell communication (cytokines) Cancers



DNA damage DNA repair protein activity

Thinking Zinc Study Design



Blue Gap-Tachee Chapter, Navajo Nation

Red Water Pond Road Community

Status/Progress

Cent

und

Supert

S

<u>MN</u> N

Approvals

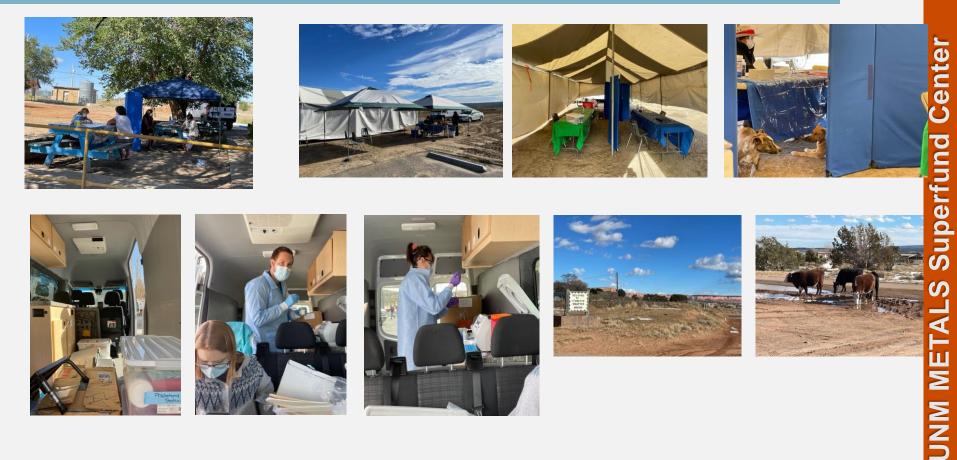
- Navajo HRRB January 2019
- Registration Clinicaltrials.gov NCT03908736

Continued Community Engagement (CEC/SRIC)

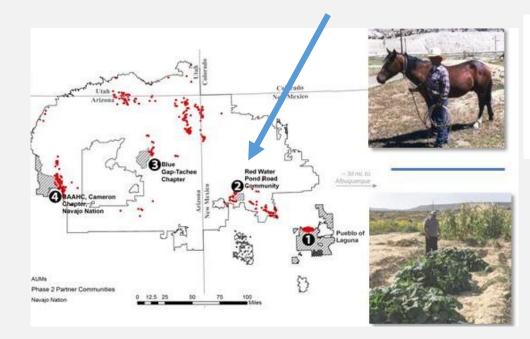
>50 community activities (i.e. chapter meetings and booths at events)

Enrollment (52 of 80 goal as of March 2022) 34 women, 18 men ages 21-64, median ~59

- RWPR Community Completed in April 2022
- Blue Gap Community ongoing


Retention—71+%

Sample and Data Analysis—in progress

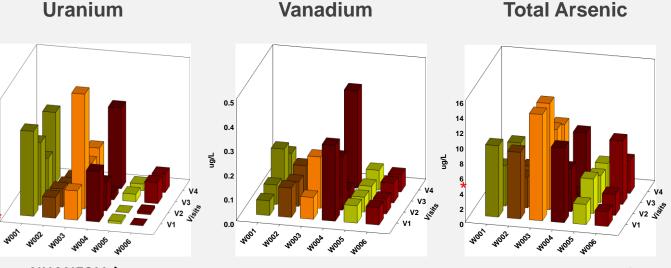

Conducting TZ during COVID

Initial findings from RWPRC Participants

Red Water Pond Road Community

Uranium levels greater than Navajo Nation median

Thinking Zin	Thinking Zinc Participant Pre-Zinc Urinary Metal Levels						
Metal	Median	Range	%>95 th percentile	NHANES	NHANES	NBCS	NBCS
			NHANES/NBCS	50 th	95 th	50 th	95th
Antimony	0.077	0.020 - 1.540	15%/1.7%	0.046	0.151	0.077	0.964
Arsenic	4.392	1.495 - 135.014	3.3%/4.9%	5.62	56.2	5.392	16.81
Barium	1.201	0.058 - 437.227	5%/1.7%	1.24	4.83	3.903	27.9
Beryllium	0.002	0.000 - 0.047	NA/6.7%	<lod< td=""><td><lod< td=""><td>0.011</td><td>0.014</td></lod<></td></lod<>	<lod< td=""><td>0.011</td><td>0.014</td></lod<>	0.011	0.014
Cadmium	0.163	0.031 - 1.207	5%/16.7%	0.188	0.882	0.096	0.44
Cesium	3.199	0.921 - 25.151	6.7%/1.7%	4.22	10.4	4.675	16.771
Cobalt	0.416	0.106 - 4.794	6.7%/3.3%	0.404	1.2	1.012	2.522
Lead	0.129	0.016 - 2.706	1.7%/1.7%	0.315	1.14	0.306	1.884
Manganese	0.092	0.002 - 1.963	8.3%/0%	0.209	0.487	0.244	6.89
Molybdenum	24.148	1.728 - 130.684	1.7%/0%	36.3	94.7	55.193	245
Platinum	0.013	0.000 - 0.398	28.3%/30%	<lod< td=""><td>0.035</td><td>0.007</td><td>0.03</td></lod<>	0.035	0.007	0.03
Strontium	101.669	10.867 - 3100.765	11.7%/3.3%	101	266	185	696.056
Tin	0.954	0.116 - 14.605	11.7%/0%	0.431	3.06	2.07	20.975
Tungsten	0.030	0.002 - 0.193	0%/0%	0.061	0.279	0.137	1.276
Uranium	0.019	0.002 - 19.162	31.7%/6.7%	0.005	0.026	0.016	0.109
Vanadium*	0.156	0.019 - 28.837					


Certain metals had 10% of samples exceeding the NHANES 95th percentile (blue). Antimony, Platinum, Strontium, Tin, and Uranium

For Uranium 31.7% and 6.7% of samples exceeded the NHANES and Navajo Birth Cohort Study (NBCS) 95th percentile, respectively.

•

Median metal levels are shown for Visit 1 and Visit 2 samples collected before zinc supplementation. Values are corrected for urinary creatinine and reported as micrograms per gram creatinine (μ g/g creatinine). For reference, the 50th and 95th percentile levels are provided for the 2019 (January) National Health and Nutrition Examination Survey (NHANES) values and participants in the Navajo Birth Cohort Study including women, men and babies (N=1661-1782 for each metal). Metals results highlighted in blue represent those where more than 10% of samples had levels in excess of the NHANES 95th percentile values. *Urine levels for vanadium are not included in NHANES reporting. NA – Not available due to measurements below the level of detection of the instrument

Longitudinal biomonitoring reveals fluctuations

Vanadium

NHANES Values * 50th percentile 0.005 ** 95th percentile 0.031

0.07

0.06

0.05

0.04

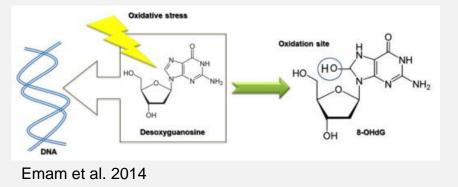
0.03

0.02

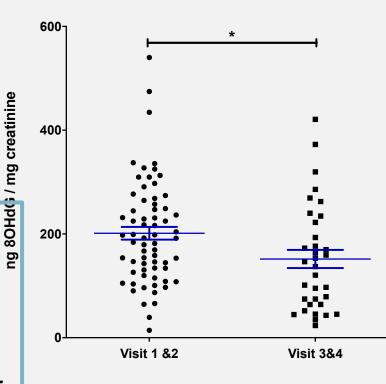
0.01 0.00

ng/L

Synchronized participant group for collections


NHANES Values * 50th percentile 5.74 ****** 95th percentile 49.9

Total Arsenic



Center Superfund S **UNM METAL**

Post-zinc reduction in DNA damage marker 8-OHdG

- Preliminary population results from TZ demonstrate a reduction in oxidative DNA damage with zinc
- (See Dasher-Titus, Poster on Thinking Zinc)
- Also see reductions in cytokines associated with inflammation and autoimmunity (GM-CSF, IFNγ, IL12-P70, IFNβ, IL29 and IFNα)

ent upert 5 S Σ

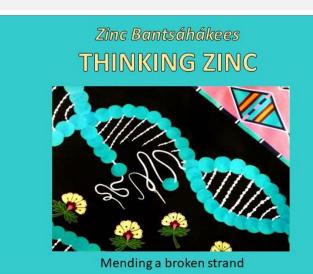
Center

Superfund

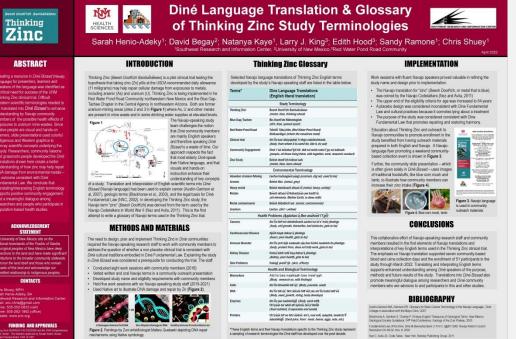
S

UNM META

Paintings by Mallery Quetawki Zuni Pueblo



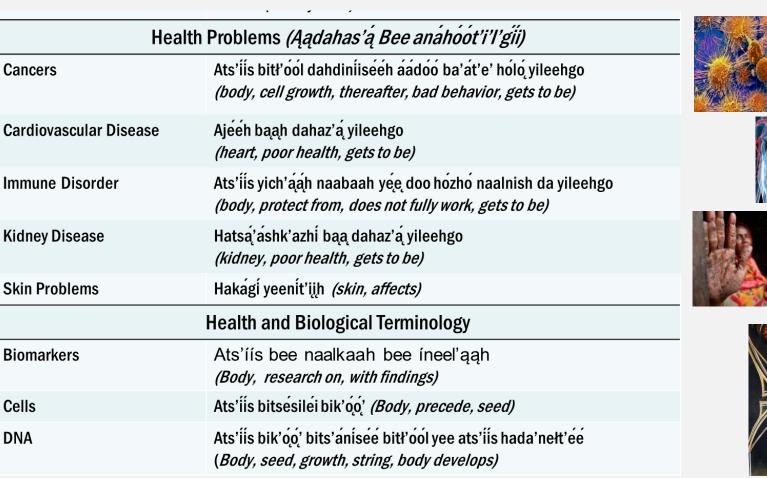
Thinking Zinc built on Community Input Sarah Henio-Adeky, Chris Shuey, MPH; David Begay, PhD


- Study Design: Single-arm cohort design, not placebo-controlled
- Study name from community input: Thinking Zinc — Beesh Dootl'izh Bantsáhákees [metal + blue (the one that is) + thinking about it]
- Expanded age inclusion criteria
- Community vetting of recruitment and outreach materials
- Translation of scientific language to Navajo for presentations and consenting

Painting by M. Quetawki

Diné Language Translation & Glossary of Thinking Zinc Study Terminologies

- Creating a resource in *Diné Bizaad* (Navajo Language) for learners and speakers identified as a critical need for success of the UNM Thinking Zinc clinical trial.
- Western scientific terminologies needed to be translated into *Diné Bizaad* to enhance understanding by Navajo community members
- Respects the fact that most elderly *Diné* speak their Native language, and that visuals and hands-on instruction improve their understanding of key concepts


Navajo Translations of Key Terms in the Thinking Zinc Study

Terms*	Dine Language Translations (English literal translation)		
	Study Terminology		
Thinking Zinc	Beesh Dootł'izh Bantsáhákees <i>(metal, blue, thinking about)</i>		
Blue Gap/Tachee	Bis Dootł'izh Nideeshgiizh <i>(dirt, blue, spread apart)</i>		
Red Water Pond Road	Tółchií' Siką́ Atiin <i>(Red Water Pond Road)</i> Ahidaazdigai <i>(where the meadows meet)</i>		
Clinical trial	Ats'iís baa'ahayaadée' k'ehgo nabóhwintaah. <i>(body, from where it is cared for, like it, try out)</i>		
Community Engagement	Diné t'áá kédahat'iįdi bił ahił na'anish naha'i'go na'aalkaah (people, all those living there, with together, work, research conduct)		
Zinc Study	Béésh dootł'izh bóhoo'aah <i>(metal, blue, learn about)</i>		

Navajo Translation of Scientific Terms

Methods in Community Engagement

- Conducted eight work sessions with community members (2018)
- Vetted written and oral Navajo terms in a community outreach presentation
- Developed study name and eligibility requirements with community members
- Held five work sessions with six Navajo-speaking study staff (2019-2021)
- Used paintings (below) by Zuni artist Mallery Quetawki to illustrate DNA damage and repair by Zn

U Damages Immune Cell DNA

Zinc Repairs Damage to DNA

Traditional Foods Used in Outreach

- Outreach and educational materials prepared in both English and Navajo.
- Community slide presentation given solely in Diné Bizaad
- Uses images of traditional foodstuffs, like blue corn mush and lamb, to illustrate how community members can increase their zinc intake

Conclusions

- Translating and interpreting English terms supports enhanced understanding among Diné speakers of the purpose, methods and future results of the study.
- Translations into Diné Bizaad also promote meaningful dialogue among researchers and Diné community members who are advisors to and participants in this and other studies.

UNM PIs

Johnnve Lewis, Ph.D. Matt Campen, Ph.D. David Begay, Ph.D. Adrian Brearley, Ph.D. Scott Burchiel, Ph.D Jose Cerrato, Ph.D Eszter Erdei, Ph.D. Joseph Galewsky, Ph.D. Melissa Gonzales, Ph.D. Laurie Hudson, Ph.D. Ji-Hvun Lee, Ph.D. Jim Liu, Ph.D. Debra MacKenzie, Ph.D.

SRIC

Chris Shuev, MPH Paul Robinson, MCRP Sarah Henio-Adeky Floyd Baldwin Wilfred Herrera

IEI

Nancy Maryboy, PhD

Stanford University

Scott Fendorf, Ph.D.

Biomedical Researchers

Alicia Bolt, Ph.D. Karen Cooper, Ph.D. Fredine Lauer Nina Marlev Shea McClain Bernadette Pacheco Bingye Xue, Ph.D.

Environmental Researchers

Abdul-Medhi Ali, Ph.D. Jacquelyn Delp Elena Dobrica, Ph.D. Ricardo Gonzalez-Pinon, Ph.D. Tylee Griego Eric Peterson, Ph.D. Andrew Schuler, Ph.D.

Biostatistics and Data Management

Miranda Cajero Patrick Bridges, Ph.D. Roufei Du, Ph.D. Ryan Johnson Li Li, Ph.D. Li Luo. Ph.D. Curtis Miller. Ph.D. Elena O'Donald, Ph.D.

Research Translation Core Malcolm Benally Joseph Hoover, Ph.D. Carolyn Roman, Ph.D.

Trainees

Sumant Avasarala, Ph.D. Jessica Begay Erica Dashner, Ph.D. Cherie DeVore Tammi Duncan, Ph.D. Xin Gao Jorge Gonzalez Estrella, Ph.D. Elaine El Hayek, Ph.D. Juliana Huestis Sebastian Medina Maria I. Meza Francisco Lopez Moruno Jennifer Ona Sara S. Nozadi, Ph.D. Carmen Velasco Lindsay Volk Tamara Young Katherine Zychowski, Ph.D.

Thank you to the communities who have contributed and supported this work!

- Laguna Pueblo •
- And the Navaio communities of
- Red Water Pond Road
 - **Blue Gap-Tachee**

Our funders: NIEHS UNM College of Pharmacy UNM Comprehensive Cancer Center

Research reported here was supported by the National Institute Of Environmental Health Sciences of the National Institutes of Health under Award Number P42ES025589. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

