

Best Practices for Uranium Mines and Mills: Where are they needed? Compiled for World Uranium Symposium April 14 – 16, 2015 Quebec City, Canada Paul Robinson, Research Director sricpaul@earthlink.net Southwest Research and Information Center PO Box 4524 Albuquerque, NM 87196 www.sric.org

Groundwater in mine reaching surface due to inadequate backfill

Paguate Reservoir never reclaimed as it was outside mine lease but received 30 years of mine water runoff

Paguate Village resident Larry-Lente discusses mine reclamation with NIEHS director Lynda Birnbaum, March 2013.

Dorothy Purley, who drow an ore-hauling truck at the Jackpile Mine wasleading advocate to reclamation and head studies prior to hendeat from cancer in 2003

Photo showing mine at height of production in 1979.

Jackpile uranium mine, Laguna Pueblo, New Mexico next to Paguate Village listed as a Superfund Site in 2013 due to effort by Pueblo to improve reclamation work conducted in 1986-94. Energy Production – solar and wind are renewables booming and nuclear reactor growth projections and use are dropping

Reducing demand for new uranium sites and focusing need to apply Best Practices at existing sites to address risk at legacy, "zombie" and operating mines; few if any new mines likely in near future due to falling demand for uranium as nuclear fuel.

Uranium Mill Tailings – Best Practice – Dry Tailings in Below Grade Disposal Sites

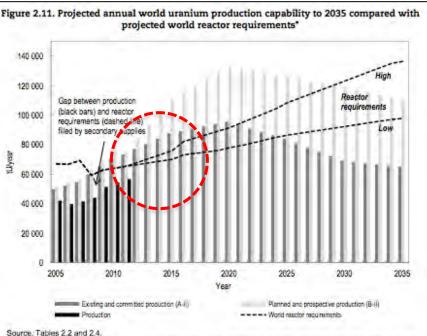
NRC in USA recommends below grade disposal as prime option. Mt. Polley Panel in Canada recommends dry tailings and reduced use of water covers

Uranium Mine Waste Rock

IAEA recommends that uranium mine waste rock be managed similar to uranium tailings because they have similar long-lived radioactive and non-radioactive constituents.

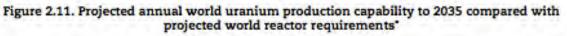
In Situ Recovery – Solution Mining

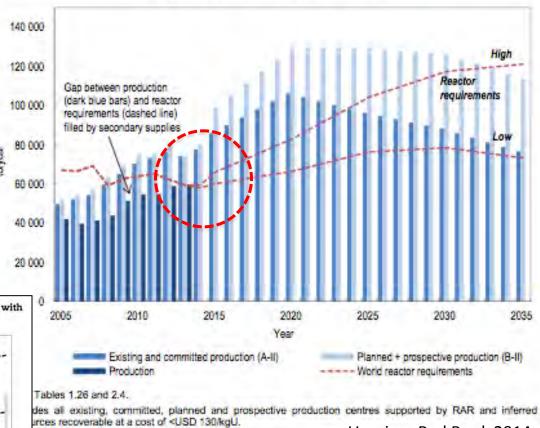
40CFR192 – restoration and background for ore zone, adjacent portions of aquifer


Uranium Supply and Demand Projections

2015 – 2020

Current excess existing and committed production capacity vs. reactor demand:


- 15,000 20,000 tpyU with "high demand"
- 30,000 40,000 tpyU with "low demand" URedbook2014


Little if any uranium demand for any new planned and prospective production until 2023 in high demand scenario NO demand for new planned and prospective uranium production through end of graph at 2035 with low demand scenario.

* Includes all existing, committed, planned and prospective production centres supported by RAR and inferred

resources recoverable at a cost of <USD 130/kgU.

Uranium Red Book 2014

Uranium Red Book 2012

Uranium Mill Tailings – Best Practice – Dry Tailings in Below Grade Disposal Sites

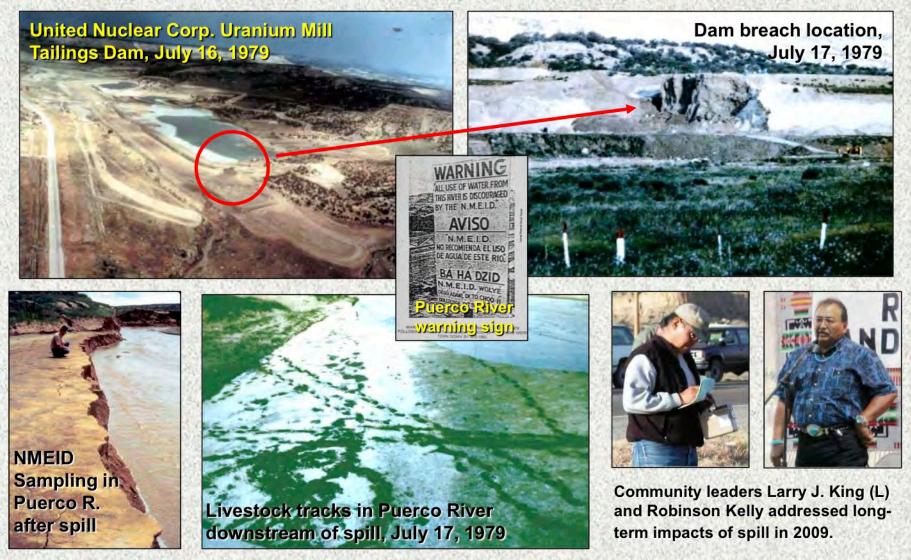
Churchrock tailing tailings dam spill among events that led to adoption of US Nuclear Regulation Commission (NRC) regulatory standard since mid-1980s

- "Criterion 3—The "prime option" for disposal of tailings is placement below grade, either in mines or specially excavated pits (that is, where the need for any specially constructed retention structure is eliminated). "

http://www.nrc.gov/reading-rm/doc-collections/cfr/part040/part040-appa.html 10CFR40-Appendix A

Mt. Polley tailings spill in August 2014 has lead to its first set of recommendations from an Expert Panel that:

"...concluded that the future requires not only an improved adoption of best applicable practices (BAP), but also a migration to best available technology (BAT). Examples of BAT are filtered, unsaturated, compacted tailings and reduction in the use of water covers in a closure setting. Examples of BAP bear on improvements in corporate design responsibilities, and adoption of Independent Tailings Review Boards ." Mt. Polley Independent Expert Panel Report, Exec Summary p. 8/156 https://www.mountpolleyreviewpanel.ca/sites/default/files/report/ReportonMountPolleyTailingsStorageFacilityBreach.pdf


KEY DESIGN AND OPERATION CRITERIA

- Below-grade disposal requires all tailings material to be below original land surface ("grade")

- Filtered, unsaturated, compacted tailings possible using existing technology to produce highdensity thickened, paste or dry tailings

- Reduction of use of water covers in a closure setting.

Puerco River Contaminant Source: Church Rock Uranium Mill Tailings Spill,* July 16, 1979 *Largest release of radioactive wastes, by volume, in US history

Photos courtesy of Southwest Research and Information Center, New Mexico Environmental Improvement Division, Albuquerque Journal.

Mt. Polley Tailings Dam Failure and Spill

http://www.cbc.ca/news/canada/britishcolumbia/mount-polley-spill-blamed-ondesign-of-embankment-1.2937387

http://www.miningwatch.ca/blog/mount-polley-and-failure-compliance

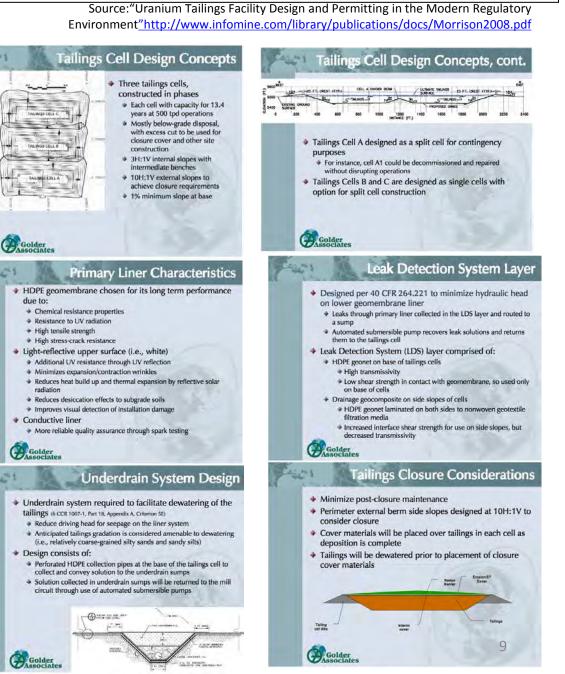
July 29, 2014

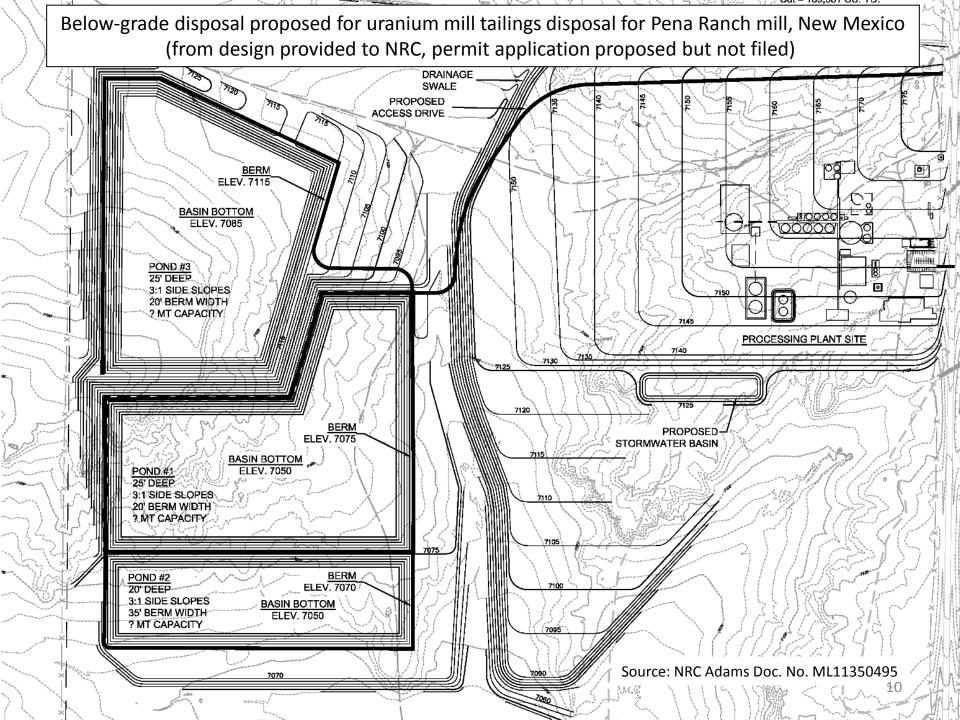
August 5, 2014

http://juneauempire.com/local/2014-08-08/advocatestailings-dam-breach-warning-alaska

<u>http://commonsensecanadian.ca/mount-polley-spill-may-</u> far-bigger-initially-revealed/

Below –grade disposal is being used for the Moab (Utah) Tailings Relocation Project that is excavating and transporting a 16,000,000ton inactive tailings pile to a below grade disposal site 30 km north. Images show: 1) Atlas tailings pile before project began 2) tailings removal in progress, and 3) view after additional tailings removal


From: <u>http://www.gjem.energy.gov/moab/</u> and <u>http://www.moabtailings.org/</u> Crescent Junction Disposal Site uses below-grade tailings disposal with windborne particles releases controlled daily cover using material excavated to allow below grade disposal.


"Mostly" below-grade tailings disposal in phased, lined cells designed for Pinon Ridge Uranium Mill proposed in Colorado

- Designed to maximize the amount of solution recovered by the LDS, and act as a final flow barrier protecting the subgrade
- Design consists of:
 - 60 mil HDPE double-sided textured geomembrane
 Resistance to chemicals in solution
 - Double-sided texturing to increase frictional resistance
 - Geosynthetic clay liner (GCL)
 - No locally-available sources of clay, and difficult to achieve requirements even by amending local soils with bentonite
 Compatibility testing with anticipated tailings solution indicate negligible change in GCL permeability
- Analyses (Giroud et al. 1997) show that the proposed secondary liner system with GCL is more stringent than the prescriptive liner system with 3 feet of clay.

High Density Thickened Tailings (HDTT) Storage

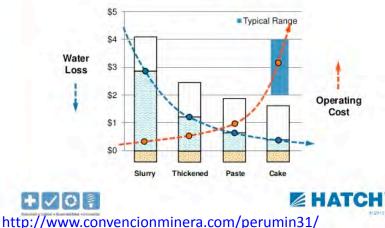
Thickened tailings, as the name suggests, involves the mechanical process of dewatering low solids concentrated slurry. This is normally achieved by using compression (or high rate) thickeners or a combination of thickeners and filter presses.
High Density Thickened Tailings (HDTT) are defined as tailings that have been significantly dewatered to a point where they will form a homogeneous non-segregated mass when deposited from the end of a pipe

Surface Paste Tailings Disposal

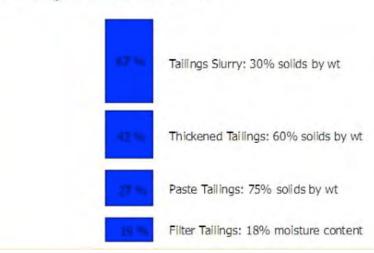
Paste tailings are defined as tailings that have been significantly dewatered to a point where they do not have a critical flow velocity when pumped, do not segregate as they deposit and produce minimal (if any) bleed water when discharged from a pipe

Dry Stacking of Tailings (Filtered Tailings)

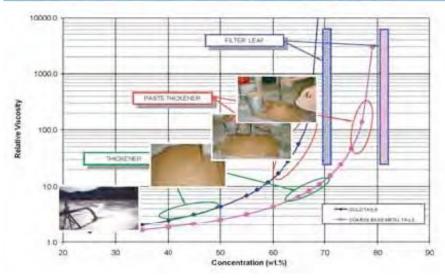
- Dewatering tailings to higher degrees than paste produces a filtered wet (saturated) and dry (unsaturated) cake that can no longer be transported by pipeline due to its low moisture content


Illustrations for Understanding Tailings Dewatering Options

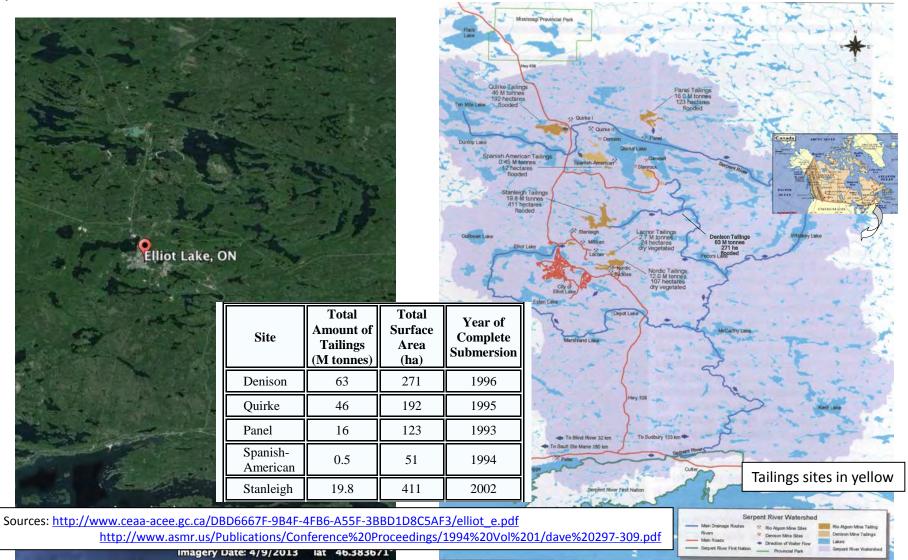
27


Cost vs Benefit to Recover Tailings Water

Where is the best investment in water recovery from tailings for the least cost?

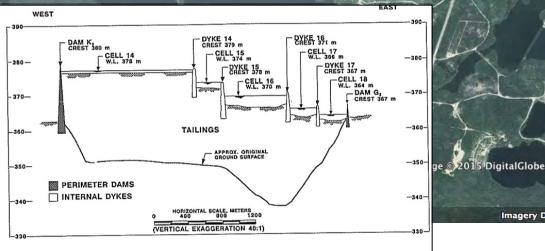

encuentros/tecnologia/jueves19/1230-Jerry-Rowe.pdf

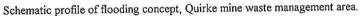
Tailings Percent Water

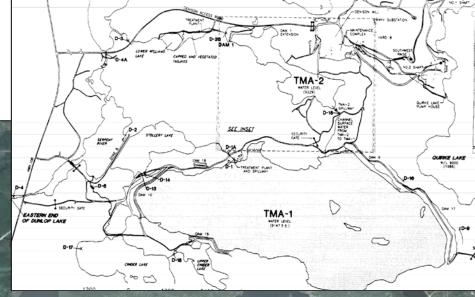

http://technology.infomine.com/reviews/PasteTailings/

SLURRY RHEOLOGY VS. WT % SOLIDS

http://www.womp-int.com/story/2011vol09/story025.htm


Canadian Nuclear Safety Commission (CNSC) Review of Canadian uranium mill tailings sites Started announced shortly after Mt. Polley spill. No information available yet on how the Independent Panel Recommendations to reduce use of water covers for closure situations to be applied at Elliot Lake, Ontario, Canada uranium mill tailings sites where permanent water covers have been in place for 20 years at 5 sites containing more than 145 million tons of the more than 160 million tons of uranium mill tailings in the Serpent River watershed




Extensive of water covers in closure setting in Canadian uranium sector. Canadian regulators have allowed water covers at Elliot Lake and in Saskatchewan.

Quirke – 46 million tons – tailings surrounded by manmade dams and internal dykes with built on tailings, with inflowing water cover water at 5 elevations.

Denison tailings – 63 million tons - are placed in preexisting lakes with man-made perimeter dams

TMA-1

Imagery Date: 7/3/2011

TMA-2

lat 46.491821° lon -82.642381° elev 1193 ft 🛛 eye alt 22738 ft 🚺

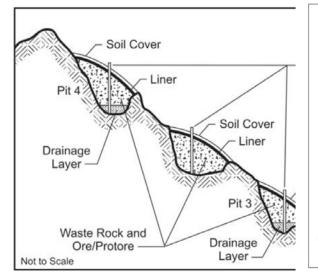
Google earth

Uranium Mine Waste Rock requires Management similar to tailings

Midnite Uranium Mine Superfund Site, Spokane Indian Reservation, Washington State

33 million tons of waste rock and 2.4 million tons of uneconomic low grade ore left at mine site required remediation. 2.9 million tons of ore at 0.2% uranium removed to produce 11 million pounds of uranium.

http://www.epa.gov/superfund/sites/npl/nar1546.htm


International Atomic Energy Agency (IAEA) has determined that uranium mine waste rock and uranium mill tailings both require similar management systems as both are radioactive waste containing sources of risk including long-lived radioisotopes and heavy metals.

"[S] since mine and mill tailings will continue to present a potential hazard to human health after closure, additional analyses and measures may be needed to provide for the protection of future generations. Such measures should not be left until closure but should be considered and implemented throughout the design, construction and operation of the mining and milling facilities. The protection of the public, from the beginning of operations to post-closure, should be considered in its entirety from the beginning of the design of the facilities. The overall objective and subsidiary criteria developed explicitly for the management of radioactive waste should be consistent with these considerations."

Source: "MANAGEMENT OF RADIOACTIVE WASTE FROM THE MINING AND MILLING OF ORES--SAFETY GUIDE," INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 2002, http://www-

pub.iaea.org/MTCD/publications/PDF/Pub1134_scr.pdf

Midnite Mine Remedial Plan

Remedial Design - 2012-2015

Early Works and Phase 1-2015-2018

- Access Road
- Mobilization
- Construction Support Zone Site Preparation
- Alluvial Groundwater Collection System
- West Access Road cleanup
- Pit 4 Dewatering and Pit Preparation
- Pit 4 Backfilling
- Water Treatment Plant (WTP) Construction
- South Pond Construction
- Cover Borrow Area Preparation
- Pit 4 Cover System and Revegetation

Phase 2 - 2018 - 2021

- Pit 3 Dewatering and Preparation
- Pit 3 and BPA Phase II Backfill
- Eastern Drainage, Western Drainage Sediment Removal
- East Access Road cleanup

- Old WTP Demolition
 - West Pond Construction
- Area 5 Grading and Capping

Phase 3 - 2022 - 2024

- South Dump Pond Removal
- Central Drainage Mine Waste Rock and PCP Removal
- Central Drainage Sediment Removal
- Area 5 Grading
- Site/Decontamination Area Cleanup Pit 3 and BPA Cover System System

- Ongoing Water Treatment
 - Site Monitoring and Maintenance
 - West Pond Decommissioning

Midnite Mine remediation cost of \$193 million shared by Newmont Mine (72%) and US Government (28%).Completion of Remedial Plan due 2025, perpetual treatment of 5 – 10 million gallons of mine pit and seepage water at on-site plant requires treatment plant with 26 million gallons/year to manage peak flows. and disposal site for 40-80 tons of mine water treatment sludge required.

Midnite Mine information available at: http://yosemite.epa.gov/R10/CLEANUP.NSF/sites/midnite

Post Remediation - 2025 onward

Mine Waste Dumps remain on surface at Saskatchewan uranium mines. Mines used for tailings disposal in which open pit mines are backfilled with tailings to be covered by water with drainage "blanket" to collect seepage from surrounding rock for treatment and discharge to watershed. Implication of implementing Mt. Polly recommendations regarding "reduction of use of water covers in closure setting" yet to be addressed for mine waste and tailings at Saskatchewan mines.

Sue E Pit – mined out

Mine waste dumps

Sue C Pit (includes Sue A) – mined out

Sue B Pit – mined out

McClean Lake Complex –Sue Site 70% Areva; 22.5% Denison; 7.5% OURD, Ltd. 23,000 t U produced from Sue Site Mines; Reserves 8,000 t U in ore at 2.2% U; No mines current operating – <u>www.denisonmines.com</u> McClean Lake mill at JEB Site north of Sue Site Collins Bay Mines at Rabbit Lake Complex – 100% Cameco; 91,500 t U – Historical Production – 1975 – 2010; Reserves at remaining deposits at Collins Bay and Eagle Point – 12,750 t U in ore at 0.75% U <u>www.cameco.com</u>

Mine waste dump

Collins Bay – A Pit – Flooded after closure by breaching berm holding back Wollaston lake

Mine Waste remediation requires extensive characterization as the large volume of mine wastes - 3 - 5 + times volume of ore for open pits and 50-100% of volume of ore from underground mines - and their storage locations are less well understood than tailings geochemistry and disposal sites.

At Tachee-Blue Gap Chapter of Navajo Nation, 2014 analyses of rocks used as cover over an abandoned uranium mine – "Claim 28" mine shown below - found uranium content of the waste rock cover similar to local ores – 0.2 – 0.7% uranium, 0.4 – 1.5% vanadium – in first samples since the 1990 placement of the "safety" cover. Seeps and springs near the mine topped uranium drinking water standards.

Spring and Seep Water Analyses

"Claim 28" Mine Waste Analyses

Sample	Parameter			1 mar 1 m	Elemental Content, ug g-1							
	U (µg/L)	As (µg/L)	pН		Si	S	Al	Fe	Mg	U	V	Ca
Spring	163	5.7	7.4	Undisturbed Soil	241,950	1,339	52,129	26,739	3,068	BDL*	BDL*	16,441
Seep	135	9.6	3.8	Mine waste1	235,563	223	69,533	15,259	181	2,248	15,814	855
MCL	30	10		Mine waste2	243,703	1,834	59,730	3,511	405	6,614	4,328	3,293

~250 ft

Source: Uranium in Soil, Mine Waste and Spring Water near Abandoned Uranium Mines Tachee/Blue Gap and Black Mesa Chapters, Navajo Nation, AZ http://www.sric.org/uranium/docs/METALS Monograph1 Final 040814a.pdf

Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR

192) - http://www.epa.gov/radiation/laws/192.html

The first revision to this standard since 1995 would establish ground water restoration goals and monitoring requirements at ISR facilities

Revision of EPA Rule 40CFR192 Is a current policy issue.

Public hearings are being held in April 2015.

Comments on the Proposed Rules are being received until May 27, 2015

The proposed rule would:

- require ISR operators to monitor ground water for 30 years after demonstrating that the ground water chemistry has been restored and is stable. Under this proposal, the 30-year monitoring period could be shortened if monitoring data and geochemical modeling show that the ground water chemistry has been restored, has remained stable for at

least three consecutive years, and is likely to remain stable into the future. Statistical analyses would have to demonstrate ground water stability at a confidence level of 95 percent.

Require characterization of background ground water chemistry for ore zone, and adjacent

aquifer: The proposed rule describes how ISR facilities are to characterize ground water chemistry before beginning uranium recovery operations.

Requirements to meet restoration goals for 13 constituents: The proposed rule would require compliance with whichever standard is most protective from the US Safe Drinking Water Act (SDWA), the Resource Conservation and Recovery Act (RCRA), or UMTRCA for each of 13 ground

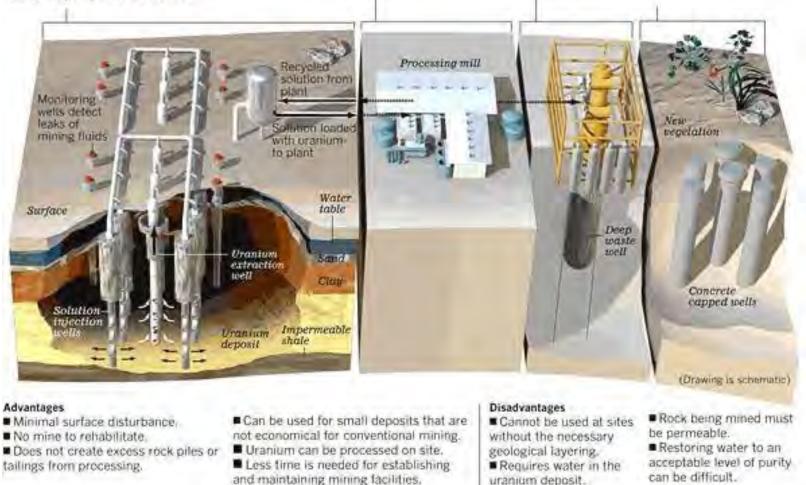
Water constituents. The 13 ground water constituents are: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (as nitrogen), molybdenum, radium, total uranium and gross alpha particle activity. If the water in the aquifer meets the ground water standards before ISR operations begin, it would have to be restored to meet them again after operations have stopped. If the constituent concentrations already exceed standards before operations begin, the operator would have to restore the ground water chemistry to original, pre-operational concentrations. If background concentrations or ground water protection standards cannot be achieved, ISR operators can request an Alternate Concentration Limit (ACL), provided that they meet certain criteria and conditions

Solution mining

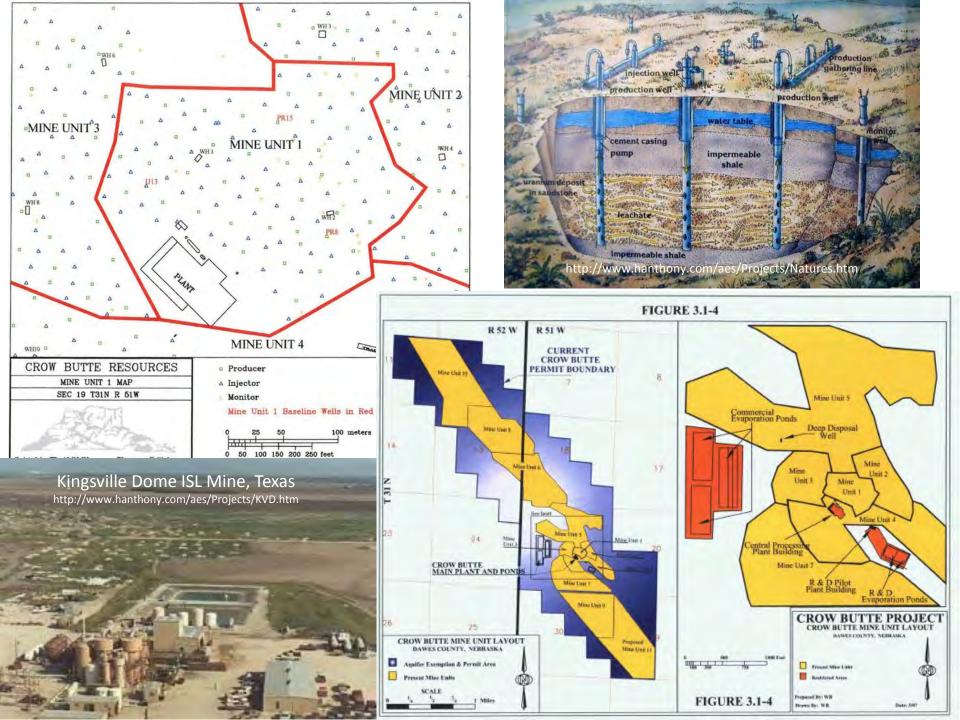
Extraction

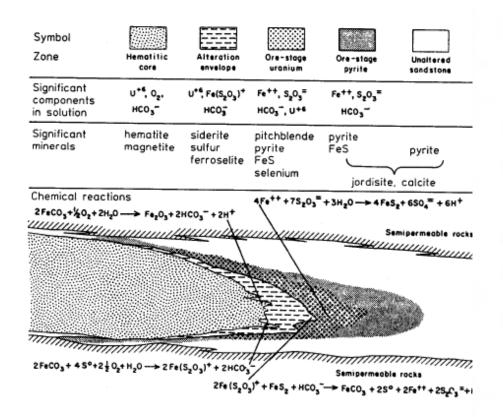
A solution of groundwater and oxygen is pumped into injection wells drilled through layers of sandstone. Oxygen rusts uranium in the sandstone. Uranium dissolves in the water, and the solution is pumped to the surface.

Processing


The solution is pumped to a plant, where uranium is removed. Water is reoxygenated and pumped back down injection wells. It recirculates until uranium in the deposit is depleted.

Waste management


Wastewater is treated and pumped into disposal wells, evaporated or sprinkled into the soil at the surface. Solids are sent to a waste disposal site.


Restoration

Water is purified and reinjected into the well field. Wells are later filled with concrete and capped below the surface. Surface soil is decontaminated if necessary.

Sources: Uranium Producers of America, Environmental Protection Agency, National Energy Institute, Bureau of Land Management, Utah Geological Survey, Uranium Resources, Inc. Graphics reporting by TOM REINBEN, Graphic by LOBENN INTOVEZ Los Angeles Times

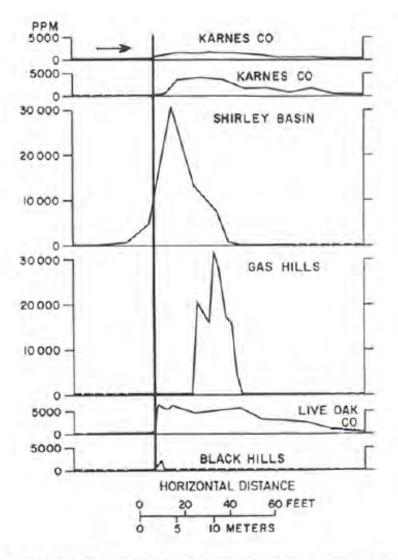


Figure 3. Schematic of idealized Wyoming Basin uranium roll front deposit showing alteration zones, related mineral components, solution components, and important aqueous chemical reactions for Fe, S, O, and CO₂ (after Granger and Warren, 1974).

Figure 5. Concentration and distribution of uranium in various roll front deposits (after Harshman, 1974).

Cameco-Owned Crow Butte In Situ Uranium Mine, Nebraska

N HISTORICAL MARKER

THE COUNCIL TREE

In September 1875 a lone cottonwood provided a landmark where the Allison Commission met with thousands of Lakota Sioux in a futile effort to buy the Black Hills. Based on the recollections of elderly Lakotas. Captain Christopher Robinson Chapter, D. A. R., of Crawford, marked what was believed to be the historic tree in May 1932. The cottonwood, sometimes called "the treaty tree," died in the 1970s. It stood a few hundred feet south of this marker. looking toward Crow Butte.

Crawford Mistorical Society, 2003 Nebraska State Bistorical Seciety

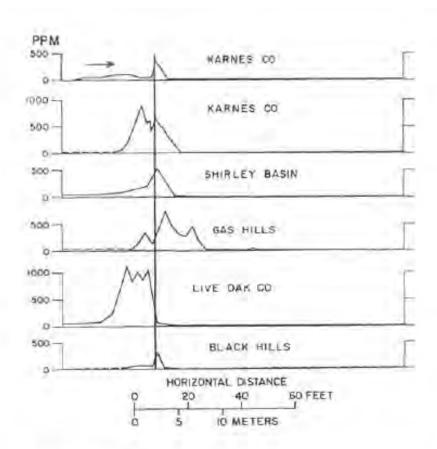


Figure 6. Concentration and distribution of selenium in various uranium roll from deposits (after Harshman, 1974).

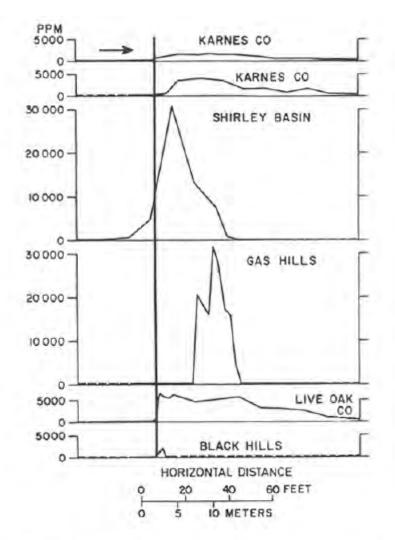


Figure 8. Concentration and distribution of arsenic in various uranium roll front deposits (after Harshman, 1974).

Why is restoration to pre-mining background is so difficult at ISR Mine?:

Consideration of Geochemical Issues in Groundwater Restoration at Uranium In Situ Leach Mining Facilities, NUREG/CR-6870, January 2007 Prepared by USGS for NRC,

http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6870/

...Because of heterogeneities in the aquifers, the fresh groundwater that is brought into the ore zone does not completely displace the residual lixiviant....

...groundwater sweep may cause oxic groundwater from upgradient of the deposit to enter into the mined area, making it more difficult to re-establish chemically reducing conditions...

...it is difficult to predict how much time is required or even if the reducing conditions will return via natural processes. The mining disturbance introduces a considerable amount of oxidant to the mined region.....

Injection of lixiviant - leaching fluid - destroys water quality oxidizes & mobilizes contaminants changes the redox potential of the rock

Restoration to baseline is not possible as contaminants continue to bleed with time

'Restored' water migrates downgradient and follows paleochannel flow paths carrying elevated levels of U, Ra, SO₄, O₂

Natural attenuation is unlikely because the net charge on rock particles is negative therefore anions will not adsorb to rock particle contamination plume grows with time.

Thank you for your time and attention